首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3923篇
  免费   308篇
  2022年   31篇
  2021年   40篇
  2020年   37篇
  2019年   28篇
  2018年   61篇
  2017年   40篇
  2016年   86篇
  2015年   126篇
  2014年   120篇
  2013年   208篇
  2012年   258篇
  2011年   243篇
  2010年   169篇
  2009年   183篇
  2008年   210篇
  2007年   189篇
  2006年   182篇
  2005年   206篇
  2004年   198篇
  2003年   177篇
  2002年   167篇
  2001年   40篇
  2000年   48篇
  1999年   56篇
  1998年   65篇
  1997年   41篇
  1996年   40篇
  1995年   49篇
  1994年   41篇
  1993年   41篇
  1992年   48篇
  1991年   33篇
  1990年   24篇
  1989年   27篇
  1988年   21篇
  1987年   24篇
  1985年   31篇
  1984年   27篇
  1983年   22篇
  1982年   28篇
  1981年   28篇
  1980年   34篇
  1979年   30篇
  1978年   34篇
  1977年   21篇
  1976年   21篇
  1974年   20篇
  1973年   20篇
  1972年   18篇
  1957年   17篇
排序方式: 共有4231条查询结果,搜索用时 875 毫秒
951.
Genetic similarities between plant interactions with microbial pathogens and wheat interactions with Hessian fly larvae prompted us to investigate defense and counterdefense mechanisms. Plant oxidative burst, a rapid increase in the levels of active oxygen species (AOS) within the initial 24 h of an interaction with pathogens, commonly is associated with defenses that are triggered by gene-for-gene recognition events similar to those involving wheat and Hessian fly larvae. RNAs encoded by Hessian fly superoxide dismutase (SOD) and catalase (CAT) genes, involved in detoxification of AOS, increased in first-instar larvae during both compatible and incompatible interactions. However, mRNA levels of a wheat NADPH oxidase (NOX) gene that generates superoxide (O2-) did not increase. In addition, inhibiting wheat NOX enzyme with diphenyleneiodonium did not result in increased survival of avirulent larvae. However, nitro blue tetrazolium staining indicated that basal levels of O2- are present in both uninfested and infested wheat tissue. mRNA encoded by wheat genes involved in detoxification of the cellular environment, SOD, CAT, and glutathione-S-transferase did not increase in abundance. Histochemical staining with 3,3-diaminobenzidine revealed no increases in wheat hydrogen peroxide (H2O2) during infestation that were correlated with the changes in larval SOD and CAT mRNA. However, treatment with 2',7'-dichlorofluorescin demonstrated the presence of basal levels of H2O2 in the elongation zone of both infested and uninfested plants. The accumulation of a wheat flavanone 3-hydroxylase mRNA did show some parallels with larval gene mRNA profiles. These results suggested that larvae encounter stresses imposed by mechanisms other than an oxidative burst in wheat seedlings.  相似文献   
952.
Sun L  Warncke K 《Proteins》2006,64(2):308-319
The structure of the EutB protein from Salmonella typhimurium, which contains the active site of the coenzyme B12 (adenosylcobalamin)-dependent enzyme, ethanolamine ammonia-lyase, has been predicted by using structural proteomics techniques of comparative modelling. The 453-residue EutB protein displays no significant sequence identity with proteins of known structure. Therefore, secondary structure prediction and fold recognition algorithms were used to identify templates. Multiple three-dimensional template matching (threading) servers identified predominantly beta8alpha8, TIM-barrel proteins, and in particular, the large subunits of diol dehydratase (PDB: 1eex:A, 1dio:A) and glycerol dehydratase (PDB: 1mmf:A), as templates. Consistent with this identification, the dehydratases are, like ethanolamine ammonia-lyase, Class II coenzyme B12-dependent enzymes. Model building was performed by using MODELLER. Models were evaluated by using different programs, including PROCHECK and VERIFY3D. The results identify a beta8alpha8, TIM-barrel fold for EutB. The beta8alpha8, TIM-barrel fold is consistent with a central role of the alpha/beta-barrel structures in radical catalysis conducted by the coenzyme B12- and S-adenosylmethionine-dependent (radical SAM) enzyme superfamilies. The EutB model and multiple sequence alignment among ethanolamine ammonia-lyase, diol dehydratase, and glycerol dehydratase from different species reveal the following protein structural features: (1) a "cap" loop segment that closes the N-terminal region of the barrel, (2) a common cobalamin cofactor binding topography at the C-terminal region of the barrel, and (3) a beta-barrel-internal guanidinium group from EutB R160 that overlaps the position of the active-site potassium ion found in the dehydratases. R160 is proposed to have a role in substrate binding and radical catalysis.  相似文献   
953.
954.
The 5-HT2C receptor has been implicated in the regulation of appetite. As such, small molecule agonists to this receptor may serve as novel therapies to combat obesity. We describe here the identification, synthesis, and SAR of a 5-HT2C agonist from a unique pyrimidine-diazabicyclo[3.3.0]octane series. This compound displayed good potency at the 5-HT2C receptor, modest selectivity relative to other 5-HT2 receptors, and was efficacious in an acute feeding study in rats.  相似文献   
955.
A series of 1-aryloxy-3-piperidinylpropan-2-ols possessing potent dual 5-HT1A receptor antagonism and serotonin reuptake inhibition was discovered. 1-(1H-Indol-4-yloxy)-3-(4-benzo[b]thiophen-2-ylpiperidinyl)propan-2-ols exhibited selective and high affinities at the 5-HT1A receptor and serotonin reuptake site in vitro. In vivo evaluation of this series of compounds demonstrated elevated extracellular serotonin levels from the basal and quick recovery of neuron firing that was presumably suppressed by the initial acute activation of 5-HT1A somatodendritic autoreceptors.  相似文献   
956.
A novel class of 4-substituted-8-(2-phenyl-cyclohexyl)-2,8-diaza-spiro[4.5]decan-1-ones have been discovered and developed as potent and selective GlyT1 inhibitors. The molecules are devoid of activity at the GlyT2 isoform and display excellent selectivities against the mu opioid receptor as well as the nociceptin/orphanin FQ peptide (NOP) receptor. A novel, straightforward and efficient synthetic strategy for the assembly of the target molecules is also presented.  相似文献   
957.
Cyanobacteria, such as Anabaena, produce a variety of bioactive natural products via polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), and hybrid peptide/polyketide pathways. The protein Asl1650, which is a member of the acyl carrier protein family from the cyanobacterium Anabaena sp. PCC 7120, is encoded in a region of the Anabaena genome that is rich in PKS and NRPS genes. To gain new insight into the physiological role of acyl carriers in Anabaena, the solution structure of Asl1650 has been solved by NMR spectroscopy. The protein adopts a twisted antiparallel four-helix bundle fold, with a variant phosphopantetheine-attachment motif positioned at the start of the second helix. Structure comparisons with proteins from other organisms suggest a likely physiological function as a discrete peptidyl carrier protein.  相似文献   
958.
The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for “middle of the SARS-unique domain”) in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1"-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.  相似文献   
959.
Herpesviruses are composed of capsid, tegument, and envelope. Capsids assemble in the nucleus and exit the nucleus by budding at the inner nuclear membrane, acquiring tegument and the envelope. This study focuses on the changes of the nuclear envelope during herpes simplex virus 1 (HSV-1) infection in HeLa and Vero cells by employing preparation techniques at ambient and low temperatures for high-resolution scanning and transmission electron microscopy and confocal laser scanning microscopy. Cryo-field emission scanning electron microscopy of freeze-fractured cells showed for the first time budding of capsids at the nuclear envelope at the third dimension with high activity at 10 h and low activity at 15 h of incubation. The mean number of pores was significantly lower, and the mean interpore distance and the mean interpore area were significantly larger than those for mock-infected cells 15 h after inoculation. Forty-five percent of nuclear pores in HSV-1-infected cells were dilated to more than 140 nm. Nuclear material containing capsids protrude through them into the cytoplasm. Examination of in situ preparations after dry fracturing revealed significant enlargements of the nuclear pore diameter and of the nuclear pore central channel in HSV-1-infected cells compared to mock-infected cells. The demonstration of nucleoporins by confocal microscopy also revealed fewer pores but focal enhancement of fluorescence signals in HSV-1-infected cells, whereas Western blots showed no loss of nucleoporins from cells. The data suggest that infection with HSV-1 alters the number, size, and architecture of nuclear pores without a loss of nucleoporins from altered nuclear pore complexes.  相似文献   
960.
The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.The coronavirus replication cycle begins with the translation of the 29-kb positive-strand genomic RNA to produce two large polyprotein species (pp1a and pp1ab), which are subsequently cleaved to produce 15 or possibly 16 nonstructural proteins (nsp''s) (11). Among these, nsp3 is the largest nsp and also the largest coronavirus protein. nsp3 is a glycosylated (16, 22), multidomain (36, 51), integral membrane protein (38). All known coronaviruses encode a homologue of severe acute respiratory syndrome coronavirus (SARS-CoV) nsp3, and sequence analysis suggests that at least some functions of nsp3 may be found in all members of the order Nidovirales (11). Hallmarks of the coronavirus nsp3 proteins include one or two papain-like proteinase domains (3, 12, 16, 31, 56, 62), one to three histone H2A-like macrodomains which may bind RNA or RNA-like substrates (5, 9, 48, 54, 55), and a carboxyl-terminal Y domain of unknown function (13). An extensive bioinformatics analysis of the coronavirus replicase proteins by Snijder et al. (51) provided detailed annotations of the then-recently sequenced SARS-CoV genome (35, 47), including the identification of a domain unique to SARS-CoV and the prediction of the ADP-ribose-1″-phosphatase (ADRP) activity of the X domain (since shown to be one of the macrodomains).Only limited information is so far available regarding the ways in which the functions of nsp3 are involved in the coronavirus replication cycle. Some functions of nsp3 appear to be directed toward protein; e.g., the nsp3 proteinase domain cleaves the amino-terminal two or three nsp''s from the polyprotein and has deubiquitinating activity (4, 6, 14, 30, 53, 60). Most homologues of the most conserved macrodomain of nsp3 appear to possess ADRP activity (9, 34, 41-43, 48, 59) and may act on protein-conjugated poly(ADP-ribose); however, this function appears to be dispensable for replication (10, 42) and may not be conserved in all coronaviruses (41). The potential involvement of nsp3 in RNA replication is suggested by the presence of several RNA-binding domains (5, 36, 49, 54, 55). nsp3 has been identified in convoluted membrane structures that are also associated with other replicase proteins and that have been shown to be involved in viral RNA synthesis (16, 24, 52), and nsp3 papain-like proteinase activity is essential for replication (14, 62). Other conserved structural features of nsp3 include two ubiquitin-like domains (UB1 and UB2) (45, 49). We have also recently reported that nsp3 is a structural protein, since it was identified as a minor component of purified SARS-CoV preparations, although it is not known whether nsp3 is directly involved in virogenesis or is incidentally incorporated due to protein-protein or protein-RNA interactions (36).A nucleic acid-binding region (NAB) is located within the polypeptide segment of residues 1035 to 1203 of nsp3. The NAB is expected to be located in the cytoplasm, along with the papain-like protease, ADRP, a region unique to SARS-CoV (the SARS-CoV unique domain [SUD]), and nsp3a, since both the N and C termini of nsp3 were shown previously to be cytoplasmic (38). Two hydrophobic segments are membrane spanning (38), and the NAB is located roughly 200 residues in the N-terminal direction from the first membrane-spanning segment. This paper presents the next step in the structural coverage of nsp3, with the determination of the NAB structure. The structural studies included nuclear magnetic resonance (NMR) characterization of two constructs, an nsp3 construct comprising residues 1035 to 1181 [nsp3(1035-1181)] and nsp3(1066-1203), and complete NMR structure determination for the construct nsp3(1066-1181) (see Fig. Fig.8).8). The structural data were then used as a platform from which to investigate the nature of the previously reported single-stranded RNA (ssRNA)-binding activity of the NAB (36). Since no three-dimensional (3D) structures for the corresponding domains in other group II coronaviruses are known and since the SARS-CoV NAB has only very-low-level sequence identity to other proteins, such data could not readily be derived from comparisons with structurally and functionally characterized homologues.Open in a separate windowFIG. 8.Sequence alignment of the polypeptide segment nsp3(1066-1181) that forms the globular domain of the SARS-CoV NAB with homologues from other group II coronaviruses. Protein multiple-sequence alignment was performed using ClustalW2 and included sequences from SARS-CoV Tor2 (accession no. AAP41036) and representatives of three protein clusters corresponding to three group II coronavirus lineages identified by a BLAST search: bat coronavirus HKU5-5 (BtCoV-HKU5-5; accession no. ABN10901), BtCoV-HKU9-1 (accession no. P0C6T6), and human coronavirus HKU1-N16 (HCoV-HKU1-N16; accession no. ABD75496). Above the sequences, the positions in full-length SARS-CoV nsp3, the locations of the regular secondary structures in the presently solved NMR structure of the SARS-CoV NAB globular domain, and the residue numbering in this domain are indicated. Amino acids are colored according to conservation and biochemical properties, following ClustalW conventions. Residues implicated in interactions with ssRNA are marked with inverted black triangles. In the present context, the key features are that there is only one position with conservation of K or R (red) and that there are extended sequences with conservation of hydrophobic residues (blue) (see the text).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号