首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3737篇
  免费   284篇
  2022年   31篇
  2021年   38篇
  2020年   35篇
  2019年   27篇
  2018年   58篇
  2017年   37篇
  2016年   81篇
  2015年   124篇
  2014年   117篇
  2013年   205篇
  2012年   252篇
  2011年   236篇
  2010年   164篇
  2009年   175篇
  2008年   203篇
  2007年   182篇
  2006年   173篇
  2005年   198篇
  2004年   184篇
  2003年   173篇
  2002年   160篇
  2001年   33篇
  2000年   47篇
  1999年   49篇
  1998年   63篇
  1997年   39篇
  1996年   38篇
  1995年   44篇
  1994年   39篇
  1993年   41篇
  1992年   41篇
  1991年   30篇
  1990年   15篇
  1989年   21篇
  1988年   19篇
  1987年   20篇
  1985年   28篇
  1984年   25篇
  1983年   20篇
  1982年   27篇
  1981年   28篇
  1980年   29篇
  1979年   29篇
  1978年   34篇
  1977年   21篇
  1976年   19篇
  1974年   15篇
  1973年   18篇
  1970年   14篇
  1957年   16篇
排序方式: 共有4021条查询结果,搜索用时 46 毫秒
191.
NMR structures of recombinant prion proteins from various species expressed in Escherichia coli have been solved during the past years, but the fundamental question of the relevancy of these data relative to the naturally occurring forms of the prion protein has not been directly addressed. Here, we present a comparison of the cellular form of the bovine prion protein isolated and purified from healthy calf brains without use of detergents, so that it contains the two carbohydrate moieties and the part of the GPI anchor that is maintained after enzymatic cleavage of the glycerolipid moiety, with the recombinant bovine prion protein expressed in E. coli. We show by circular dichroism and (1)H-NMR spectroscopy that the three-dimensional structure and the thermal stability of the natural glycoprotein and the recombinant polypeptide are essentially identical. This result indicates possible functional roles of the glycosylation of prion proteins in healthy organisms, and provides a platform and validation for future work on the structural biology of prion proteins, which will have to rely primarily on the use of recombinant polypeptides.  相似文献   
192.
193.
Repeated glacial events during the Pleistocene fragmented and displaced populations throughout the northern continents. Different models of the effects of these climate-driven events predict distinct phylogeographic and population genetic outcomes for high-latitude faunas. The role of glaciations in (i) promoting intraspecific genetic differentiation and (ii) influencing genetic diversity was tested within a phylogeographic framework using the rodent Microtus oeconomus. The spatial focus for the study was Beringia, which spans eastern Siberia and northwestern North America, and was a continental crossroads and potential high arctic refugium during glaciations. Variation in mitochondrial DNA (cytochrome b and control region; 214 individuals) and nuclear DNA (ALDH1 intron; 63 individuals) was investigated across the Beringian region. Close genetic relationships among populations on either side of the Bering Strait are consistent with a history of periodic land connections between North America and Asia. A genetic discontinuity observed in western Beringia between members of a Central Asian clade and a Beringian clade is geographically congruent with glacial advances and with phylogeographic discontinuities identified in other organisms. Divergent island populations in southern Alaska were probably initially isolated by glacial vicariance, but subsequent differentiation has resulted from insularity. Tests of the genetic effects of postglacial colonization were largely consistent with expansion accompanied by founder effect bottlenecking, which yields reduced diversity in populations from recently deglaciated areas. Evidence that populations in the Beringian clade share a history of expansion from a low-diversity ancestral population suggests that Beringia was colonized by a small founder population from central Asia, which subsequently expanded in isolation.  相似文献   
194.
Triticum aestivum xylanase inhibitor I (TAXI-I) is a wheat protein that inhibits microbial xylanases belonging to glycoside hydrolase family 11. In the present study, recombinant TAXI-I (rTAXI-I) was successfully produced by the methylotrophic yeast Pichia pastoris at high expression levels (approximately 75 mg/L). The rTAXI-I protein was purified from the P. pastoris culture medium using cation exchange and gel filtration chromatographic steps. rTAXI-I has an iso-electric point of at least 9.3 and a mass spectrometry molecular mass of 42,013 Da indicative of one N-linked glycosylation. The recombinant protein fold was confirmed by circular dichroism spectroscopy. Xylanase inhibition by rTAXI-I was optimal at 20-30 degrees C and at pH 5.0. rTAXI-I still showed xylanase inhibition activity at 30 degrees C after a 40 min pre-incubation step at temperatures between 4 and 70 degrees C and after 2 h pre-incubation at room temperature at a pH ranging from 3.0 to 12.0, respectively. All tested glycoside hydrolase family 11 xylanases were inhibited by rTAXI-I whereas those belonging to family 10 were not. Specific inhibition activities against family 11 Aspergillus niger and Bacillus subtilis xylanases were 3570 and 2940IU/mg protein, respectively. The obtained biochemical characteristics of rTAXI-I produced by P. pastoris (no proteolytical cleft) were similar to those of natural TAXI-I (mixture of proteolytically processed and non-processed forms) and non-glycosylated rTAXI-I expressed in Escherichia coli. The present results show that xylanase inhibition activity of TAXI-I is only affected to a limited degree by its glycosylation or proteolytic processing.  相似文献   
195.
Ornithine decarboxylase (ODC) is considered the rate-limiting enzyme in polyamine biosynthesis, and an increase in putrescine after central nervous system (CNS) injury appears to be involved in neuronal death. Cerebral ischemia and reperfusion trigger an active series of metabolic events, which eventually lead to neuronal death. In the present study, ODC activity was evaluated following transient focal cerebral ischemia and reperfusion in rat. The middle cerebral artery (MCA) was occluded for 2 h in male rats with an intraluminal suture technique. Animals were sacrificed between 3 and 48 h of reperfusion following MCA occlusion, and ODC activity was assayed in cortex and striatum. ODC activity was also estimated in an in vitro ischemia model using primary rat cortical neuron cultures, at 6–24 h reoxygenation following 1 h oxygen-glucose deprivation (OGD). In cortex, following ischemia, ODC activity was increased at 3 h (P < .05), reached peak levels by 6–9 h (P < .001) and returned to sham levels by 48 h reperfusion. In striatum the ODC activity followed a similar time course, but returned to basal levels by 24 h. This suggests that ODC activity is upregulated in rat CNS following transient focal ischemia and its time course of activation is region specific. In vitro, ODC activity showed a significant rise only at 24 h reoxygenation following ischemic insult. The release of lactate dehydrogenase (LDH), an indicator for cell damage, was also significantly elevated after OGD. 0.25 mM -difluoromethylornithine (DFMO) inhibited ischemia-induced ODC activity, whereas a 10-mM dose of DFMO appears to provide some neuroprotection by suppressing both ODC activity and LDH release in neuronal cultures, suggesting the involvement of polyamines in the development of neuronal cell death.  相似文献   
196.
Signaling in apoptosis and inflammation is often mediated by proteins of the death domain superfamily in the Fas/FADD/Caspase-8 or the Apaf-1/Caspase-9 pathways. This superfamily currently comprises the death domain (DD), death effector domain (DED), caspase recruitment domain (CARD), and pyrin domain (PYD) subfamilies. The PYD subfamily is most abundant, but three-dimensional structures are only available for the subfamilies DD, DED, and CARD, which have an antiparallel arrangement of six alpha helices as common fold. This paper presents the NMR structure of PYD of NALP1, a protein that is involved in the innate immune response and is a component of the inflammasome. The structure of NALP1 PYD differs from all other known death domain superfamily structures in that the third alpha helix is replaced by a flexibly disordered loop. This unique feature appears to relate to the molecular basis of familial Mediterranean fever (FMF), a genetic disease caused by single-point mutations.  相似文献   
197.
The nuclear magnetic resonance structure of the globular domain with residues 121-230 of a variant human prion protein with two disulfide bonds, hPrP(M166C/E221C), shows the same global fold as wild-type hPrP(121-230). It contains three alpha-helices of residues 144-154, 173-194 and 200-228, an anti-parallel beta-sheet of residues 128-131 and 161-164, and the disulfides Cys166-Cys221 and Cys179-Cys214. The engineered extra disulfide bond in the presumed "protein X"-binding site is accommodated with slight, strictly localized conformational changes. High compatibility of hPrP with insertion of a second disulfide bridge in the protein X epitope was further substantiated by model calculations with additional variant structures. The ease with which the hPrP structure can accommodate a variety of locations for a second disulfide bond within the presumed protein X-binding epitope suggests a functional role for the extensive perturbation by a natural second disulfide bond of the corresponding region in the human doppel protein.  相似文献   
198.
Insulin resistance in skeletal muscle is a hallmark feature of type 2 diabetes. An increasing number of enzymes and metabolic pathways have been implicated in the development of insulin resistance. However, the primary cellular cause of insulin resistance remains uncertain. Proteome analysis can quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting state. The observed changes in protein expression indicate increased cellular stress, e.g. up-regulation of two heat shock proteins, and perturbations in ATP (re)synthesis and mitochondrial metabolism, e.g. down-regulation of ATP synthase beta-subunit and creatine kinase B, in skeletal muscle of patients with type 2 diabetes. Phosphorylation appears to play a key, potentially coordinating role for most of the proteins identified in this study. In particular, we demonstrated that the catalytic beta-subunit of ATP synthase is phosphorylated in vivo and that the levels of a down-regulated ATP synthase beta-subunit phosphoisoform in diabetic muscle correlated inversely with fasting plasma glucose levels. These data suggest a role for phosphorylation of ATP synthase beta-subunit in the regulation of ATP synthesis and that alterations in the regulation of ATP synthesis and cellular stress proteins may contribute to the pathogenesis of type 2 diabetes.  相似文献   
199.
The SDF-1alpha/CXCR4 ligand/chemokine receptor pair is required for appropriate patterning during ontogeny and stimulates the growth and differentiation of critical cell types. Here, we demonstrate SDF-1alpha and CXCR4 expression in fetal pancreas. We have found that SDF-1alpha and its receptor CXCR4 are expressed in islets, also CXCR4 is expressed in and around the proliferating duct epithelium of the regenerating pancreas of the interferon (IFN) gamma-nonobese diabetic mouse. We show that SDF-1alpha stimulates the phosphorylation of Akt, mitogen-activated protein kinase, and Src in pancreatic duct cells. Furthermore, migration assays indicate a stimulatory effect of SDF-1alpha on ductal cell migration. Importantly, blocking the SDF-1alpha/CXCR4 axis in IFNgamma-nonobese diabetic mice resulted in diminished proliferation and increased apoptosis in the pancreatic ductal cells. Together, these data indicate that the SDF-1alpha-CXCR4 ligand receptor axis is an obligatory component in the maintenance of duct cell survival, proliferation, and migration during pancreatic regeneration.  相似文献   
200.
Vibrational Raman optical activity (ROA) spectra of the wheat proteins alpha-gliadin (A-gliadin), omega-gliadin, and a 30 kDa peptide called T-A-1 from the high molecular weight glutenin subunit (HMW-GS) Dx5 were measured to obtain new information about their solution structures. The spectral data show that, under the conditions investigated, A-gliadin contains a considerable amount of hydrated alpha-helix, most of which probably lies within a relatively structured C-terminal domain. Smaller quantities of beta-structure and poly(l-proline) II (PPII) helix were also identified. Addition of methanol was found to increase the alpha-helix content at the expense of some of the beta and PPII structure. In comparison, omega-gliadin and the T-A-1 peptide were found to consist of large amounts of well-defined PPII structure with some turns but no alpha-helix. The results for the T-A-1 peptide are in agreement with a model in which HMW-GS are extended but not highly rigid. Application of a pattern recognition technique, based on principal component analysis (PCA), to the ROA spectra reinforces these conclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号