首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3840篇
  免费   292篇
  4132篇
  2022年   35篇
  2021年   40篇
  2020年   36篇
  2019年   27篇
  2018年   60篇
  2017年   38篇
  2016年   84篇
  2015年   129篇
  2014年   121篇
  2013年   219篇
  2012年   262篇
  2011年   241篇
  2010年   169篇
  2009年   178篇
  2008年   211篇
  2007年   187篇
  2006年   173篇
  2005年   200篇
  2004年   188篇
  2003年   171篇
  2002年   161篇
  2001年   33篇
  2000年   43篇
  1999年   48篇
  1998年   64篇
  1997年   40篇
  1996年   38篇
  1995年   45篇
  1994年   39篇
  1993年   43篇
  1992年   46篇
  1991年   31篇
  1990年   16篇
  1989年   24篇
  1988年   19篇
  1987年   21篇
  1985年   27篇
  1984年   26篇
  1983年   20篇
  1982年   28篇
  1981年   30篇
  1980年   29篇
  1979年   35篇
  1978年   36篇
  1977年   22篇
  1976年   20篇
  1974年   16篇
  1973年   18篇
  1970年   16篇
  1957年   16篇
排序方式: 共有4132条查询结果,搜索用时 0 毫秒
161.
Human activity has substantially increased atmospheric NO 3 deposition in many regions of the Earth, which could lead to the N saturation of terrestrial ecosystems. Sugar maple (Acer saccharum Marsh.) dominated northern hardwood forests in the Upper Great Lakes region may be particularly sensitive to chronic NO 3 deposition, because relatively moderate experimental increases (three times ambient) have resulted in substantial N leaching over a relatively short duration (5–7 years). Although microbial immobilization is an initial sink (i.e., within 1–2 days) for anthropogenic NO 3 in this ecosystem, we have an incomplete understanding of the processes controlling the longer-term (i.e., after 1 year) retention and flow of anthropogenic N. Our objectives were to determine: (i) whether chronic NO 3 additions have altered the N content of major ecosystem pools, and (ii) the longer-term fate of 15NO 3 in plots receiving chronic NO 3 addition. We addressed these objectives using a field experiment in which three northern hardwood plots receive ambient atmospheric N deposition (ca. 0.9 g N m–2 year–1) and three plots which receive ambient plus experimental N deposition (3.0 g NO3 -N m–2 year–1). Chronic NO 3 deposition significantly increased the N concentration and content (g N/m2) of canopy leaves, which contained 72% more N than the control treatment. However, chronic NO 3 deposition did not significantly alter the biomass, N concentration or N content of any other ecosystem pool. The largest portion of 15N recovered after 1 year occurred in overstory leaves and branches (10%). In contrast, we recovered virtually none of the isotope in soil organic matter (SOM), indicating that SOM was not a sink for anthropogenic NO 3 over a 1 year duration. Our results indicate that anthropogenic NO 3 initially assimilated by the microbial community is released into soil solution where it is subsequently taken up by overstory trees and allocated to the canopy. Anthropogenic N appears to be incorporated into SOM only after it is returned to the forest floor and soil via leaf litter fall. Short- and long-term isotope tracing studies provided very different results and illustrate the need to understand the physiological processes controlling the flow of anthropogenic N in terrestrial ecosystems and the specific time steps over which they operate.  相似文献   
162.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between dihydropyridine receptors (DHPRs) in the plasma membrane and ryanodine receptors (RyRs) in the sarcoplasmic reticulum. However, it remains uncertain what regions, if any, of the two proteins interact with one another. Toward this end, it would be valuable to know the spatial interrelationships of DHPRs and RyRs within plasma membrane/sarcoplasmic reticulum junctions. Here we describe a new approach based on metabolic incorporation of biotin into targeted sites of the DHPR. To accomplish this, cDNAs were constructed with a biotin acceptor domain (BAD) fused to selected sites of the DHPR, with fluorescent protein (XFP) attached at a second site. All of the BAD-tagged constructs properly targeted to junctions (as indicted by small puncta of XFP) and were functional for excitation-contraction coupling. To determine whether the introduced BAD was biotinylated and accessible to avidin (approximately 60 kDa), myotubes were fixed, permeablized, and exposed to fluorescently labeled avidin. Upon expression in beta1-null or dysgenic (alpha1S-null) myotubes, punctate avidin fluorescence co-localized with the XFP puncta for BAD attached to the beta1a N- or C-terminals, or the alpha1S N-terminal or II-III loop. However, BAD fused to the alpha1S C-terminal was inaccessible to avidin in dysgenic myotubes (containing RyR1). In contrast, this site was accessible to avidin when the identical construct was expressed in dyspedic myotubes lacking RyR1. These results indicate that avidin has access to a number of sites of the DHPR within fully assembled (RyR1-containing) junctions, but not to the alpha1S C-terminal, which appears to be occluded by the presence of RyR1.  相似文献   
163.
Thrombospondin-2 (TSP2) and osteonectin/BM-40/SPARC are matricellular proteins that are highly expressed by bone cells. Mice deficient in either of these proteins show phenotypic alterations in the skeleton, and these phenotypes are most pronounced under conditions of altered bone remodeling. For example, TSP2-null mice have higher cortical bone volume and are resistant to bone loss associated with ovariectomy, whereas SPARC-null mice have decreased trabecular bone volume and fail to demonstrate an increase in bone mineral density in response to a bone-anabolic parathyroid hormone treatment regimen. In vitro, marrow stromal cell (MSC) osteoprogenitors from TSP2-null mice have increased proliferation but delayed formation of mineralized matrix. Similarly, in cultures of SPARC-null MSCs, osteoblastic differentiation and mineralized matrix formation are decreased. Overall, both TSP2 and SPARC positively influence osteoblastic differentiation. Intriguingly, both of these matricellular proteins appear to impact MSC fate through mechanisms that could involve the Notch signaling system. This review provides an overview of the role of TSP2 and SPARC in regulating bone structure, function, and remodeling, as determined by both in vitro and in vivo studies.  相似文献   
164.
The generation cycles of Calanus finmarchicus (Gunnerus) are described together with the seasonal variations in length, wet wt, dry wt, carbon content, nitrogen content and CN ratio in copepodite stage IV, V and stage VI males and females from Balsfjorden (69°21′N: 19°06′E), a subarctic fjord in northern Norway. C. finmarchicus overwinters in copepodite stage IV (≈ 20%) or V (≈80%) and produces one generation a year. Variations in body weight and body content of carbon and nitrogen in the different copepodite stages showed a pronounced seasonal pattern. For instance, the CN ratio was lowest (4.9) in adult females during the spawning period. Copepodite stage IV and V had higher CN values in summer and autumn (12 to 14) than in spring (8 to 10). Variations in length, weight and chemical composition revealed that the overwintering stock of C. finmarchicus went through two growth phases during this period. From September to January no significant changes in the measured variables were detected. During the second phase of the overwintering period, January to April, the different stages showed a profound decrease in weight and change in chemical composition. This seemed to be connected with the onset of sexual differentiation in stage V starting in January, subsequent moulting into adults and gonad maturation in these adults. These results are further discussed in relation to the different prevailing hypotheses concerning overwintering strategy in Calanus species.  相似文献   
165.
ABSTRACT: BACKGROUND: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. RESULTS: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. CONCLUSIONS: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis. Our workflow simplifies the use of standardized parts in plant systems, allowing the construction and expression of heterologous genes in plants within the timeframe allotted for typical iGEM projects.  相似文献   
166.
We assessed whether (1) arbuscular mycorrhizal colonization of roots (RC) and/or plant responses to arbuscular mycorrhizae (MR) vary with plant phylogeny and (2) MR and RC can be more accurately predicted with a phylogenetic predictor relative to a null model and models with plant trait and taxonomic predictors. In a previous study, MR and RC of 95 grassland species were measured. We constructed a phylogeny for these species and found it explained variation in MR and RC. Next, we used multiple regressions to identify the models that most accurately predicted plant MR. Models including either phylogenetic or phenotypic and taxonomic information similarly improved our ability to predict MR relative to a null model. Our study illustrates the complex evolutionary associations among species and constraints of using phylogenetic information, relative to plant traits, to predict how a plant species will interact with AMF.  相似文献   
167.
Opiate abuse alters the progression of human immunodeficiency virus and may increase the risk of neuroAIDS. As neuroAIDS is associated with altered microglial reactivity, the combined effects of human immunodeficiency virus-Tat and morphine were determined in cultured microglia. Specifically, experiments determined the effects of Tat and morphine on microglial-free radical production and oxidative stress, and on cytokine release. Data show that combined Tat and morphine cause early and synergistic increases in reactive oxygen species, with concomitant increases in protein oxidation. Furthermore, combined Tat and morphine, but not Tat or morphine alone, cause reversible decreases in proteasome activity. The effects of morphine on free radical production and oxidative stress are prevented by pre-treatment with naloxone, illustrating the important role of opioid receptor activation in these phenomena. While Tat is well known to induce cytokine release from cultured microglia, morphine decreases Tat-induced release of the cytokines tumor necrosis factor-α and interleukin-6, as well as the chemokine monocyte chemoattractant protein-1 (MCP-1). Finally, experiments using the reversible proteasome inhibitor MG115 show that temporary, non-cytotoxic decreases in proteasome activity increase protein oxidation and decrease tumor necrosis factor-α, interleukin-6, and MCP-1 release from microglia. Taken together, these data suggest that oxidative stress and proteasome inhibition may be involved in the immunomodulatory properties of opioid receptor activation in microglia.  相似文献   
168.
Angiotensin-converting enzyme type 2 (ACE2) has been shown to be an important member of the renin angiotensin system. Previously, we observed that central ACE2 reduces the development of hypertension following chronic angiotensin II (Ang-II) infusion in syn-hACE2 transgenic (SA) mice, in which the human ACE2 transgene is selectively targeted to neurons. To study the physiological consequences of central ACE2 over-expression on cardiac function and cardiac hypertrophy, SA and non-transgenic (NT) mice were infused with Ang-II (600 ng/kg/min, sc) for 14 days, and cardiac function was assessed by echocardiography. Blood pressure (BP), hemodynamic parameters, left ventricle (LV) mass/tibia length, relative ventricle wall thickness (2PW/LVD), cardiomyocyte diameters and collagen deposition were similar (P>0.05) between NT and SA mice during saline infusion. After a 2-week infusion, BP was elevated in NT but not in SA mice. Although ejection fraction and fractional shortening were not altered, Ang-II infusion increased 2PW/LVD compared to saline infusion in NT mice. Interestingly, the 2PW/LVD and LV mass/tibia ratios were significantly lower in SA compared to NT mice at the end of infusion. Moreover, Ang-II infusion significantly increased arterial collagen deposition and cardiomyocytes diameter in NT mice but not in transgenic animals (P<0.05). More importantly, ACE2 over expression significantly reduced the Ang-II-mediated increase in urine norepinephrine levels in SA compared to NT mice. The protective effect of ACE2 appears to involve reductions in Ang-II-mediated hypertension and sympathetic nerve activity.  相似文献   
169.
Free amino acids (FAA) constitute a significant fraction of dissolved organic nitrogen (N) in forest soils and play an important role in the N cycle of these ecosystems. However, comparatively little attention has been given to their role as labile carbon (C) substrates that might influence the metabolic status of resident microbial populations. We hypothesized that the residence time of simple C substrates, such as FAA, are mechanistically linked to the turnover of endogenous soil C pools. We tested this hypothesis across a latitudinal gradient of forested ecosystems that differ sharply with regard to climate, overstory taxon, and edaphic properties. Using a combined laboratory and field approach, we compared the turnover of isotopically labeled glycine in situ to the turnover of mineralizable soil C (Cmin) at each site. The turnover of glycine was rapid (residence times <2 h) regardless of soil type. However, across all ecosystems glycine turnover rates were strongly correlated with indices of soil organic matter quality. For example, C:N ratios for the upper soil horizons explained ~80% of the variability observed in glycine turnover, and there was a strong positive correlation between in situ glycine-C turnover and Cmin measured in the laboratory. The turnover of glycine in situ was better explained by changes in soil C availability than cross-ecosystem variation in soil temperature or concentrations of dissolved inorganic N and FAA-N. This suggests the consumption of these low-molecular-weight substrates by soil microorganisms may be governed as much by the overall decomposability of soil C as by N limitation to microbial growth.  相似文献   
170.
Adsorptive endocytosis of five different lysosomal enzymes from various human and non-human sources was susceptible to inhibition by mannose and l-fucose, methyl α-d-mannoside, α-anomeric p-nitrophenyl glycosides of mannose and l-fucose, mannose 6-phosphate and fructose 1-phosphate. A few exceptions from this general scheme were observed for particular enzymes, particularly for β-glucuronidase from human urine. The inhibition of α-N-acetylglucosaminidase endocytosis by mannose, p-nitrophenyl α-d-mannoside and mannose 6-phosphate was shown to be competitive. The loss of endocytosis after alkaline phosphatase treatment of lysosomal enzymes supports the hypothesis that the phosphorylated sugars compete with a phosphorylated carbohydrate on the enzymes for binding to the cell-surface receptors [Kaplan, Achord & Sly (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2026–2030]. Endocytosis of `low-uptake' forms of α-N-acetylglucosaminidase and α-mannosidase was likewise susceptible to inhibition by sugar phosphates and by alkaline phosphatase treatment, suggesting that `low-uptake' forms are either contaminated with `high-uptake' forms or are internalized via the same route as `high-uptake' forms. The existence of an alternative route for adsorptive endocytosis of lysosomal enzymes is indicated by the unaffected adsorptive endocytosis of rat liver β-glucuronidase in the presence of phosphorylated sugars and after treatment with alkaline phosphatase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号