首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1965年   2篇
排序方式: 共有46条查询结果,搜索用时 46 毫秒
31.
Excess of Mg2+ ions is known to inhibit the soluble inorganic pyrophosphatases (PPases). In contrast, the mutant Escherichia coli inorganic pyrophosphatase Asp42-->Asn is three times more active than native and retains its activity at high Mg2+ concentration. In this paper, another two mutant variants with Asp42 replaced by Ala or Glu were investigated to characterize the role of Asp42 in catalysis. pH-independent kinetic parameters of MgPPi hydrolysis and the dissociation constants for the activating and inhibitory Mg2+ ions were calculated. It was shown that Mg2+ inhibition of MgPPi hydrolysis by native PPase exhibited uncompetitive kinetics under the saturating substrate concentration. All three substitutions of Asp42 lead to a sharp decrease of inhibitory Mg2+ affinity to the enzyme. These findings allow determination of the sites of inhibitory and substrate Mg2+ ions binding to PPase. Common features of these mutants allow the conclusion that the function of Asp42 is to accurately coordinate the residues implicated in the substrate and the inhibitory Mg2+ ion binding to PPase active site. Structural analysis of PPase complexed with Mg2+ compared with PPase complexed with Mn2+ and reaction products confirms this supposition.  相似文献   
32.
The seasonal variability of the macrozoobenthos in a saline lagoon characterized by the absence of a permanent connection with the sea is described according to the results of a survey in Ptich’e Lake (southern Sakhalin) in 2012–2013. Changes in the species composition, abundance, and biomass of the macrozoobenthos have been revealed. Features of the formation of species complexes, benthic communities, and trophic groups are shown. Causes of the phenomena described are discussed.  相似文献   
33.
34.
The three-dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 Å resolution using Patterson's search technique and refined to an R-factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (α3)2 into α3′α3″. The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re-arrangements for pyrophosphatase function is discussed.  相似文献   
35.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the following order: hexamer–trimer–dimer–monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   
36.
Pyrophosphate regulates vital cellular reactions, and its level in E. coli cells is under the ultimate control of inorganic pyrophosphatase. The mechanisms involved in the regulation of pyrophosphatase activity still need to be elucidated. The present study demonstrated that fructose-1-phosphate inhibits pyrophosphatase activity by a mechanism not involving competition with substrate for binding to the active site. The inhibition constant governing the binding of the inhibitor to the enzyme–substrate complex is 1.1 mM. Substitutions of Lys112, Lys115, Lys148, and Arg43 in the regulatory site completely or partially abolished the inhibition. Thus, Fru-1-P is a physiological inhibitor of pyrophosphatase that acts via a regulatory site in this enzyme.  相似文献   
37.
The causes of inhibition of Escherichia coli inorganic pyrophosphatase (PPase) by Ca2+ were investigated. The interactions of several mutant pyrophosphatases with Ca2+ in the absence of substrate were analyzed by equilibrium dialysis. The kinetics of Ca2+ inhibition of hydrolysis of the substrates MgPPi and LaPPi by the native PPase and three mutant enzymes (Asp-42-Asn, Ala, and Glu) were studied. X-Ray data on E. coli PPase complexed with Ca2+ or CaPPi solved at atomic resolution were analyzed. It was shown that, in the course of the catalytic reaction, Ca2+ replaces Mg2+ at the M2 site, which shows higher affinity for Ca2+ than for Mg2+. Different properties of these cations account for active site deformation. Our findings indicate that the filling of the M2 site with Ca2+ is sufficient for PPase inhibition. This fact proves that Ca2+ is incapable of properly activating the H2O molecule for nucleophilic attack on PPi. It was also demonstrated that Ca2+, as a constituent of the non-hydrolyzable substrate analog CaPPi, competes with MgPPi at the M3 binding site. As a result, Ca2+ is a powerful inhibitor of all known PPases. Other possible reasons for the inhibitory effect of Ca2+ on the enzyme activity are also considered.  相似文献   
38.
In this review the recent studies related to the voltage dependent K+ channels are discussed. During the last 15 years the molecular cloning revealed a large number of alpha-subunits of voltage dependent K+ channels. This approach enabled to elucidate the properties of different types of channels and, in particular, characteristics of such structural elements as auxiliary subunits. These subunits are mainly responsible for the ionic permeability features of alpha-subunits. There are several cytoplasmic and membrane-associated auxiliary subunits such as beta-subunits, minK (minimal K+ channel peptide), MiRP (minK-related peptide), KChAP (K+ channel-associated protein), KChIP (K+ channel-interacting protein) and NCS (neuronal calcium sensor).  相似文献   
39.
Inorganic pyrophosphatase (PPase) is a conserved and essential enzyme catalyzing the hydrolysis of pyrophosphate PPi. Its activity is required to promote a lot of thermodynamically unfavorable reactions including biosynthesis of activated precursors of sugars and amino acids. Several protein partners of PPase were found so far in Escherichia coli by large-scale approaches. Functional role of these interactions was not studied. In this paper we report the identification of three protein partners of E. coli PPase not found earlier. Pull-down assay on the Ni2+-chelating column using 6His-tagged PPase as bait was used to isolate PPase complexes from stationary-phase cells. Of several isolated protein components, five were identified by MALDI-TOF mass-spectrometry: two chaperones (DnaK and GroEL) and three enzymes of carbohydrate and amino acid metabolism (FbaB, fructose-1,6-bisphosphate aldolase, class I; GadA, l-glutamate decarboxylase; and KduI, 5-keto-4-deoxyuronate isomerase). These three proteins were cloned, expressed and purified in 6His-tagged and/or tag-free forms. Their binary interactions with PPase were verified by independent approaches. Initial characterization of the complexes indicates that PPase may stabilize its protein partners against unfolding or degradation. Comparative analysis of the PPase protein partners allowed an insight into its possible involvement in the cell metabolic regulation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号