首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   6篇
  2024年   1篇
  2021年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   14篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   12篇
  2005年   5篇
  2004年   8篇
  2003年   5篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   2篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
排序方式: 共有130条查询结果,搜索用时 203 毫秒
81.
82.
Solid tumors are characterized by a number of physiological properties such as occurrence of significant hypoxia, large amounts of cellular reducing equivalents, compromised blood-flow and low pH, all of which are distinctly different from normal tissues. Tumor therapeutic regimens such as radiation or chemotherapy attempt to exploit these physiological differences between normal and malignant tissue. Thus, methods that can detect these subtle differences would greatly aid in devising appropriate treatment strategies. Low-frequency in vivo electron paramagnetic resonance (EPR) spectroscopy is capable of providing non-invasive measurements of these parameters in tumors. This requires the use of appropriate exogenously injected free radical reporter molecules (probes), such as nitroxides. In the present study we performed measurements of nitroxide metabolism in RIF-1 murine tumors, in vivo, and demonstrated that the rate of nitroxide decay correlated with the tumor redox environment. The results showed the existence of significantly higher reducing environment in the tumor tissue compared to normal tissue. The dependence of the tumor redox status on the intracellular GSH levels and tissue oxygenation was investigated. The measurement of redox status and its manipulation may have important implications in the understanding of tumor growth and therapy.  相似文献   
83.
Apoptosis is an active process induced by a variety of physiological and external stimuli, in which elimination of damaged cells are effected through a genetically controlled process. In this study, we have examined the mechanism of chromium(III) [Cr(III)]-induced cytotoxicity with respect to its relationship to oxidative stress. Morphology, flow cytometry, and DNA fragmentation studies show that tris-(1,10-phenanthroline)chromium(III) [Cr(III)-phen], tris-(2,2′-bipyridyl)chromium(III) [Cr(III)-bpy], trans-diaqua[1,2-bis(salicylideneamino)ethanechromium(III)] [Cr(III)-salen], and trans-diaqua[1,3-bis(salicylideneamino)propanechromium(III)] [Cr(III)-salprn] induced apoptosis of lymphocytes. Pentaammineaquachromium(III) [Cr(III)-hpa] does not induce apoptosis. Apoptosis induced by these complexes involves the generation of reactive oxygen species (ROS) as seen by increased fluorescence of dichloroflourescein (DCF) observed through flow cytometry. Pretreatment of lymphocytes with antioxidants completely abrogate apoptosis. Cr(III) treatment also increased the expression and activation of Src-family tyrosine kinases viz. p56lck, p59fyn, and p53/56lyn, as seen by immunoblotting and immune complex kinase assay. PP2, a selective Src-family tyrosine kinase inhibitor, abolishes apoptosis, indicating that Src-family tyrosine kinases are directly involved in eliciting apoptosis. Interestingly, a one-to-one correlation between the expression of Src-family tyrosine kinases and ROS is observed, since antioxidants pretreatment inhibits the expression and the activation of these kinases. These results further indicate that Cr(III)-induced apoptosis is mediated through production of ROS, which in turn activates the Src-family tyrosine kinases. The increased activation of Src-family tyrosine kinases may be a mechanism involved in apoptosis of lymphocytes elicited by various other physiological stimuli that exploit ROS as a second messenger.  相似文献   
84.
It is unclear whether oxygen plays a role in stem cell therapy. Hence, the determination of local oxygenation (Po(2)) in the infarct heart and at the site of transplantation may be critical to study the efficacy of cell therapy. To demonstrate this, we have developed an oxygen-sensing paramagnetic spin probes (OxySpin) to monitor oxygenation in the region of cell transplantation using electron paramagnetic resonance (EPR) spectroscopy. Skeletal myoblast (SM) cells isolated from thigh muscle biopsies of mice were labeled with OxySpin by coculturing the cells with submicron-sized (270 +/- 120 nm) particulates of the probe. Myocardial infarction was created by left coronary artery ligation in mice. Immediately after ligation, labeled SM cells were transplanted in the ischemic region of the heart. The engraftment of the transplanted cells and in situ Po(2) in the heart were monitored weekly for 4 wk. EPR measurements revealed the retention of cells in the infarcted tissue. The myocardial Po(2) at the site of SM cell therapy was significantly higher compared with the untreated group throughout the 4-wk period. Histological studies revealed differentiation and engraftment of SM cells into myotubes and increased incidence of neovascularization in the infarct region. The infarct size in the treated group was significantly decreased, whereas echocardiography showed an overall improvement in cardiac function when compared with untreated hearts. To our knowledge, this the first report detailing changes in in situ oxygenation in cell therapy. The increased myocardial Po(2) positively correlated with neoangiogenesis and cardiac function.  相似文献   
85.
Non-enzymatic nitric oxide synthesis in biological systems.   总被引:13,自引:0,他引:13  
Nitric oxide (NO) is an important regulator of a variety of biological functions, and also has a role in the pathogenesis of cellular injury. It had been generally accepted that NO is solely generated in biological tissues by specific nitric oxide synthases (NOS) which metabolize arginine to citrulline with the formation of NO. However, NO can also be generated in tissues by either direct disproportionation or reduction of nitrite to NO under the acidic and highly reduced conditions which occur in disease states, such as ischemia. This NO formation is not blocked by NOS inhibitors and with long periods of ischemia progressing to necrosis, this mechanism of NO formation predominates. In postischemic tissues, NOS-independent NO generation has been observed to result in cellular injury with a loss of organ function. The kinetics and magnitude of nitrite disproportionation have been recently characterized and the corresponding rate law of NO formation derived. It was observed that the generation and accumulation of NO from typical nitrite concentrations found in biological tissues increases 100-fold when the pH falls from 7.4 to 5.5. It was also observed that ischemic cardiac tissue contains reducing equivalents which reduce nitrite to NO, further increasing the rate of NO formation more than 40-fold. Under these conditions, the magnitude of enzyme-independent NO generation exceeds that which can be generated by tissue concentrations of NOS. The existence of this enzyme-independent mechanism of NO formation has important implications in our understanding of the pathogenesis and treatment of tissue injury.  相似文献   
86.
In vivo electron spin resonance (ESR) spectroscopy and whole body imaging were used to investigate the toxicity of biological reactions and organ specific oxidative changes associated with the development of acute asbestosis. Pathogen-free mice were exposed to 100 g of crocidolite asbestos suspended in 50 L of a 0.9% NaCl solution by aspiration. The bio-assay group had broncho-alveolar lavage (BAL) and serum draws performed on control and treated mice at 1, 3, and 7 days post-instillation. The ESR spectroscopic measurements and whole body imaging were performed with a separate group of mice at the same time points. Bio-assays included measurements of albumin, lactate dehydrogenase (LDH), N-acetyl--D-glucoaminidase (NAG), and catalase in acellular lavage fluids, and total antioxidants status in blood serum. ESR spectroscopic and imaging measurements were performed after intraperitoneal injection of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-15N-1-oxyl (TEMPOL) or 3-carbamoylproxyl (3-CP) nitroxides at a final concentration of 344 mg/kg body weight. Albumin showed a significant increase in BAL fluid at the 3 day exposure time point. The presence of this protein in lavage fluid indicates that the gas/blood barrier has been damaged in the lung. LDH in BAL fluid also exhibited a significant increase at 3 days post-exposure, an indication of enhanced cell membrane damage in the lung. Similar results were observed for NAG, a lysosomal enzyme, implying activation of phagocytic cells. Contemporaneously with the development of acute asbestosis at day 3 post-exposure, there were significant increases in the levels of total antioxidants in the serum and catalase in the BAL fluid. Significant impairment in the ability of asbestos exposed animals to clear TEMPOL radical during acute disease progression was evident at days 1 and 3 post exposure. ESR image measurements provided information on the location and distribution of the 3-CP label within the lungs and heart of the mouse and its clearance over time. Bioassays in concert with ESR spectroscopy and imaging presented in this study provide congruent data on the early acute phase of pulmonary injury and oxidant generation in response to asbestos exposure and their decline after 7 days. The increased levels of total antioxidants in the serum and catalase in BAL fluid correlated with the reduction in the clearance rate for TEMPOL, suggesting that a change in the redox status of the lung is associated with lung injury induced by asbestos.  相似文献   
87.
Amauroderma rugosum, commonly known as “Jiǎzī” in China, is a wild mushroom traditionally used by the Chinese to reduce inflammation, to treat diuretic and upset stomach, and to prevent cancer. It is also used by the indigenous communities in Malaysia to prevent epileptic episodes and incessant crying by babies. The aim of this study was to compare the wild and domesticated basidiocarps of A. rugosum for antioxidant and in vitro anti-inflammatory effects in LPS-stimulated RAW264.7 cells. The wild basidiocarps of A. rugosum were collected from the Belum Forest, Perak, Malaysia and the domesticated basidiocarps of A. rugosum were cultivated in the mushroom house located in the University of Malaya, Kuala Lumpur, Malaysia. Both the wild and domesticated basidiocarps were subjected to ethanolic extraction and the extracts were tested for antioxidant and anti-inflammatory activities. In this study, the crude ethanolic extract of wild (WB) and domesticated (DB) basidiocarps of A. rugosum had comparable total phenolic content and DPPH scavenging activity. However, WB (EC50 = 222.90 μg/mL) displayed a better ABTS cation radical scavenging activity than DB (EC50 = 469.60 μg/mL). Both WB and DB were able to scavenge nitric oxide (NO) radical and suppress the NO production in LPS-stimulated RAW264.7 cells and this effect was mediated through the down-regulation of inducible nitric oxide synthase (iNOS) gene. In addition, both WB and DB caused down-regulation of the inflammatory gene TNF-α and the up-regulation of the anti-inflammatory gene IL-10. There was no inhibitory effect of WB and DB on nuclear translocation of NF-κB p65. In conclusion, the wild and domesticated basidiocarps of A. rugosum possessed antioxidant and in vitro anti-inflammatory properties. WB and DB inhibited downstream inflammatory mediators (TNF-α and NO) and induced anti-inflammatory cytokine IL-10 production. No inhibitory effects shown on upstream nuclear translocation of NF-κB p65. WB and DB exhibited antioxidant activity and attenuation of proinflammatory mediators and therefore, A. rugosum may serve as a potential therapeutic agent in the management of inflammation.  相似文献   
88.
Vascular endothelium is vulnerable to the attack of glucose-derived oxoaldehydes (glyoxal and methylglyoxal) during diabetes, through the formation of advanced glycation end products (AGEs). Although aminoguanidine (AG) has been shown to protect against the AGE-induced adverse effects, its protection against the glyoxal-induced alterations in vascular endothelial cells (ECs) such as cytotoxicity, barrier dysfunction, and inhibition of angiogenesis has not been reported and we investigated this in the bovine pulmonary artery ECs (BPAECs). The results showed that glyoxal (1–10 mM) significantly induced cytotoxicity and mitochondrial dysfunction in a dose- and time-dependent (4–12 h) fashion in ECs. Glyoxal was also observed to significantly inhibit EC proliferation. The study also revealed that glyoxal induced EC barrier dysfunction (loss of trans-endothelial electrical resistance), actin cytoskeletal rearrangement, and tight junction alterations in BPAECs. Furthermore, the results revealed that glyoxal significantly inhibited in vitro angiogenesis on the Matrigel. For the first time, this study demonstrated that AG significantly protected against the glyoxal-induced cytotoxicity, barrier dysfunction, cytoskeletal rearrangement, and inhibition of angiogenesis in BPAECs. Therefore, AG appears as a promising protective agent in the treatment of AGE-induced vascular endothelial alterations and dysfunction during diabetes, presumably by blocking the reactivity of the sugar-derived dicarbonyls such as glyoxal and preventing the formation of AGEs.  相似文献   
89.
We previously showed that C-phycocyanin (PC), an antioxidant biliprotein pigment of Spirulina platensis (a blue-green alga), effectively inhibited doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. Here we investigated the cardioprotective effect of PC against ischemia-reperfusion (I/R)-induced myocardial injury in an isolated perfused Langendorff heart model. Rat hearts were subjected to 30 min of global ischemia at 37 degrees C followed by 45 min of reperfusion. Hearts were perfused with PC (10 microM) or Spirulina preparation (SP, 50 mg/l) for 15 min before the onset of ischemia and throughout reperfusion. After 45 min of reperfusion, untreated (control) hearts showed a significant decrease in recovery of coronary flow (44%), left ventricular developed pressure (21%), and rate-pressure product (24%), an increase in release of lactate dehydrogenase and creatine kinase in coronary effluent, significant myocardial infarction (44% of risk area), and TdT-mediated dUTP nick end label-positive apoptotic cells compared with the preischemic state. PC or SP significantly enhanced recovery of heart function and decreased infarct size, attenuated lactate dehydrogenase and creatine kinase release, and suppressed I/R-induced free radical generation. PC reversed I/R-induced activation of p38 MAPK, Bax, and caspase-3, suppression of Bcl-2, and increase in TdT-mediated dUTP nick end label-positive apoptotic cells. However, I/R also induced activation of ERK1/2, which was enhanced by PC treatment. Overall, these results for the first time showed that PC attenuated I/R-induced cardiac dysfunction through its antioxidant and antiapoptotic actions and modulation of p38 MAPK and ERK1/2.  相似文献   
90.
Postischemic myocardial contractile dysfunction is in part mediated by the burst of reactive oxygen species (ROS), which occurs with the reintroduction of oxygen. We hypothesized that tissue oxygen tension modulates this ROS burst at reperfusion. After 20 min of global ischemia, isolated rat hearts were reperfused with temperature-controlled (37.4 degrees C) Krebs-Henseleit buffer saturated with one of three different O2 concentrations (95, 20, or 2%) for the first 5 min of reperfusion and then changed to 95% O2. Additional hearts were loaded with 1) allopurinol (1 mM), a xanthine oxidase inhibitor, 2) diphenyleneiodonium (DPI; 1 microM), an NAD(P)H oxidase inhibitor, or 3) Tiron (10 mM), a superoxide scavenger, and were then reperfused with either 95 or 2% O2 for the first 5 min. ROS production and tissue oxygen tension were quantitated using electron paramagnetic resonance spectroscopy. Tissue oxygen tension was significantly higher in the 95% O2 group. However, the largest radical burst occurred in the 2% O2 reperfusion group (P < 0.001). Recovery of left ventricular (LV) contractile function and aconitase activity during reperfusion were inversely related to the burst of radical production and were significantly higher in hearts initially reperfused with 95% O2 (P < 0.001). Allopurinol, DPI, and Tiron reduced the burst of radical formation in the 2% O2 reperfusion groups (P < 0.05). Hypoxic reperfusion generates an increased ROS burst originating from multiple pathways. Recovery of LV function during reperfusion is inversely related to this oxygen radical burst, highlighting the importance of myocardial oxygen tension during initial reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号