首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   65篇
  2022年   19篇
  2021年   22篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   23篇
  2016年   40篇
  2015年   55篇
  2014年   55篇
  2013年   67篇
  2012年   99篇
  2011年   86篇
  2010年   60篇
  2009年   37篇
  2008年   50篇
  2007年   29篇
  2006年   43篇
  2005年   41篇
  2004年   36篇
  2003年   41篇
  2002年   29篇
  2001年   34篇
  2000年   31篇
  1999年   26篇
  1998年   20篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1994年   7篇
  1993年   6篇
  1992年   27篇
  1991年   22篇
  1990年   19篇
  1989年   20篇
  1988年   17篇
  1987年   21篇
  1986年   17篇
  1985年   12篇
  1984年   8篇
  1983年   10篇
  1982年   10篇
  1979年   5篇
  1978年   9篇
  1976年   7篇
  1975年   6篇
  1974年   4篇
  1973年   4篇
  1972年   7篇
  1970年   5篇
  1966年   4篇
排序方式: 共有1288条查询结果,搜索用时 593 毫秒
981.
Invasive species are a significant threat to global biodiversity, but our understanding of how invasive species impact native communities across space and time remains limited. Based on observations in an old field in Southeast Michigan spanning 35 years, our study documents significant impacts of habitat change, likely driven by the invasion of the shrub, Elaeagnus umbellata, on the nest distribution patterns and population demographics of a native ant species, Formica obscuripes. Landcover change in aerial photographs indicates that E. umbellata expanded aggressively, transforming a large proportion of the original open field into dense shrubland. By comparing the ant's landcover preferences before and after the invasion, we demonstrate that this species experienced a significant unfavorable change in its foraging areas. We also find that shrub landcover significantly moderates aggression between nests, suggesting nests are more related where there is more E. umbellata. This may represent a shift in reproductive strategy from queen flights, reported in the past, to asexual nest budding. Our results suggest that E. umbellata may affect the spatial distribution of F. obscuripes by shifting the drivers of nest pattern formation from an endogenous process (queen flights), which led to a uniform pattern, to a process that is both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. The number and sizes of F. obscuripes nests in our study site are projected to decrease in the next 40 years, although further study of this population's colony structures is needed to understand the extent of this decrease. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions.  相似文献   
982.
983.
Rice (Oryza sativa L.) is the staple food crop for more than half of the world’s population. The development of hybrid rice is a practical approach to increase rice production. However, rice production was frequently affected by biotic and abiotic stresses. Rice blast and bacterial blight are two major diseases in rice growing regions. Rice plantation is also frequently affected by short-term submergence or seasonal floods in wet seasons and drought in dry seasons. The utilization of natural disease resistance (R) genes and stress tolerance genes in rice breeding is the most economic and efficient way to combat or adapt to these biotic and abiotic stresses. Rice cultivar 9311 is widely planted rice variety, either as inbred rice or the paternal line of two-line hybrid rice. Here, we report the pyramiding of rice blast R gene Pi9, bacterial blight R genes Xa21 and Xa27, and submergence tolerance gene Sub1A in 9311 genetic background through backcrossing and marker-assisted selection. The improved rice line, designated as 49311, theoretically possesses 99.2% genetic background of 9311. 49311 and its hybrid rice, GZ63S/49311, conferred disease resistance to rice blast and bacterial blight and showed tolerance to submergence for over 18 days without significant loss of viability. 49311 and its hybrids had similar agronomic traits and grain quality to 9311 and the control hybrid rice, respectively. The development of 49311 provides an improved paternal line for two-line hybrid rice production with disease resistance to rice blast and bacterial blight and tolerance to submergence.  相似文献   
984.

Background  

The Rasd1 protein is a dexamethasone induced monomeric Ras-like G protein that oscillates in the suprachiasmatic nucleus (SCN). Previous studies have shown that Rasd1 modulates multiple signaling cascades. However, it is still unclear exactly how Rasd1 carries out its function. Studying protein-protein interactions involving Rasd1 may provide insights into its biological functions in different contexts.  相似文献   
985.
Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.  相似文献   
986.
Flightin is a protein in flight muscles and is crucial for the flight capacity. Flightin also has been proposed as a protein with deep ancestry and functions outside of flight muscles. However, functional and molecular characterization of flightin achieved so far is mainly in flight muscles of Drosophila. Here, we cloned the flightin (Bd-flightin) gene and tested its expression and function in Bactrocera dorsalis, an important migratory pest. Phylogenetic analysis based on flightin orthologs revealed that the divergence of flightin is consistent with the taxonomic classification of insects. Motif analysis indicated obvious variations in flightin orthologs, which may have occurred during speciation and functional differentiation. The expression is quite low during egg and larval stages, which largely increased during pupal stage and then peaked at the beginning of the adult stage. Bd-flightin also showed tissue- and age-specific expression patterns during adult stage. The relative expression level is low in wing, head, ovary and testis, which is relatively higher in leg and abdominal wall and much higher in thorax. Injection of late pupae and newly eclosed adults with 1 μg flightin dsRNA per insect both significantly reduced the expression of flightin and the flight capacity in males and females. In addition, silencing the expression of flightin also decreased the weight ratio of thorax and whole-body. These results suggested that flightin plays important roles in flight muscle development and flight function in B. dorsalis, which can potentially be used to control the flight behaviour of the fruit fly.  相似文献   
987.
Several mechanisms have been proposed to explain the effects of dietary lipid modification on autoimmune diseases. One of these being the modification of cell membranes which affects immune functions. In order to further define this mechanism, the author proposes that dietary lipid modification could affect antigen presentation, an immune function responsible for initiating cell-mediated immune responses in body defense or autoimmune diseases, through membrane lipid composition modification.  相似文献   
988.
Fundamental understanding of biomass pretreatment and its influence on saccharification kinetics, total sugar yield, and inhibitor formation is essential to develop efficient next-generation biofuel strategies, capable of displacing fossil fuels at a commercial level. In this study, we investigated the effect of residence time and temperature during ionic liquid (IL) pretreatment of switchgrass using 1-ethyl-3-methyl imidazolium acetate. The primary metrics of pretreatment performance are biomass delignification, xylan and glucan depolymerization, porosity, surface area, cellulase kinetics, and sugar yields. Compositional analysis and quantification of process streams of saccharides and lignin demonstrate that delignification increases as a function of pretreatment temperature and is hypothesized to be correlated with the apparent glass transition temperature of lignin. IL pretreatment did not generate monosaccharides from hemicellulose. Compared to untreated switchgrass, Brunauer–Emmett–Teller surface area of pretreated switchgrass increased by a factor of ~30, with a corresponding increase in saccharification kinetics of a factor of ~40. There is an observed dependence of cellulase kinetics with delignification efficiency. Although complete biomass dissolution is observed after 3 h of IL pretreatment, the pattern of sugar release, saccharification kinetics, and total sugar yields are strongly correlated with temperature.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号