首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19656篇
  免费   1885篇
  国内免费   644篇
  22185篇
  2023年   132篇
  2022年   315篇
  2021年   472篇
  2020年   321篇
  2019年   413篇
  2018年   472篇
  2017年   350篇
  2016年   593篇
  2015年   967篇
  2014年   1064篇
  2013年   1256篇
  2012年   1455篇
  2011年   1430篇
  2010年   938篇
  2009年   739篇
  2008年   1010篇
  2007年   946篇
  2006年   892篇
  2005年   820篇
  2004年   752篇
  2003年   716篇
  2002年   642篇
  2001年   552篇
  2000年   484篇
  1999年   450篇
  1998年   217篇
  1997年   203篇
  1996年   186篇
  1995年   167篇
  1994年   152篇
  1993年   121篇
  1992年   245篇
  1991年   244篇
  1990年   203篇
  1989年   216篇
  1988年   189篇
  1987年   152篇
  1986年   144篇
  1985年   168篇
  1984年   123篇
  1983年   98篇
  1982年   90篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1977年   71篇
  1976年   68篇
  1975年   88篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
Upon binding to androgen, the androgen receptor (AR) can translocate into the nucleus and bind to androgen response element(s) to modulate its target genes. Here we have shown that MG132, a 26 S proteasome inhibitor, suppressed AR transactivation in an androgen-dependent manner in prostate cancer LNCaP and PC-3 cells. In contrast, MG132 showed no suppressive effect on glucocorticoid receptor transactivation. Additionally, transfection of PSMA7, a proteasome subunit, enhanced AR transactivation in a dose-dependent manner. The suppression of AR transactivation by MG132 may then result in the suppression of prostate-specific antigen, a well known marker used to monitor the progress of prostate cancer. Further mechanistic studies indicated that MG132 may suppress AR transactivation via inhibition of AR nuclear translocation and/or inhibition of interactions between AR and its coregulators, such as ARA70 or TIF2. Together, our data suggest that the proteasome system plays important roles in the regulation of AR activity in prostate cancer cells and may provide a unique target site for the development of therapeutic drugs to block androgen/AR-mediated prostate tumor growth.  相似文献   
954.
Causal relationship between the loss of RUNX3 expression and gastric cancer   总被引:137,自引:0,他引:137  
Runx3/Pebp2alphaC null mouse gastric mucosa exhibits hyperplasias due to stimulated proliferation and suppressed apoptosis in epithelial cells, and the cells are resistant to growth-inhibitory and apoptosis-inducing action of TGF-beta, indicating that Runx3 is a major growth regulator of gastric epithelial cells. Between 45% and 60% of human gastric cancer cells do not significantly express RUNX3 due to hemizygous deletion and hypermethylation of the RUNX3 promoter region. Tumorigenicity of human gastric cancer cell lines in nude mice was inversely related to their level of RUNX3 expression, and a mutation (R122C) occurring within the conserved Runt domain abolished the tumor-suppressive effect of RUNX3, suggesting that a lack of RUNX3 function is causally related to the genesis and progression of human gastric cancer.  相似文献   
955.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   
956.
The reactive industrial chemicals acrylamide (AA) and N-methylolacrylamide (MAA) are neurotoxic and carcinogenic in animals, MAA showing a lower potency than AA. The causative agent in AA-induced carcinogenesis is assumed to be the epoxy metabolite, glycidamide (GA), which in contrast to AA gives rise to stable adducts to DNA. The causative agent in MAA induced carcinogenesis is so far not studied. The two AAs were studied in mice and rats using analysis of hemoglobin (Hb) adducts as a measure of in vivo doses and the in vivo micronucleus (MN) assay as an end-point for chromosome damage. Male CBA mice were treated by intraperitoneal (i.p.) injection of three different doses and male Sprague-Dawley rats with one dose of each AA. Identical adducts were monitored from the two AAs [N-(2-carbamoylethyl)valine] and the respective epoxide metabolites [N-(2-carbamoyl-2-hydroxyethyl)valine]. Per unit of administered amount, AA gives rise to higher (three to six times) Hb adduct levels than MAA in mice and rats. Mice exhibit, compared with rats, higher in vivo doses of the epoxy metabolites, indicating that AAs were more efficiently metabolized in the mice. In mouse the two AAs induced dose-dependent increases in both Hb adduct level and MN frequency in peripheral erythrocytes. Per unit of administered dose MAA showed only half the potency for inducing micronuclei compared with AA, although the MN frequency per unit of in vivo dose of measured epoxy metabolite was three times higher for MAA than for AA. No increase in MN frequency was observed in rat bone marrow erythrocytes, after treatment with either AA. This is compatible with a lower sensitivity of the rat than of the mouse to the carcinogenic action of these compounds.  相似文献   
957.
Starch phosphorylase (SP) is an enzyme used for the reversible phosphorolysis of the α-glucan in plant cells. When compared to its isoform in an animal cell, glycogen phosphorylase, a peptide containing 78 amino acids (L78) is inserted in the centre of the low-affinity type starch phosphorylase (L-SP). We found that the amino acid sequence of L78 had several interesting features including the presence of a PEST region, which serves as a signal for rapid degradation. Indeed, most L-SP molecules isolated from mature sweet potato roots were nicked in the middle of a molecule, but still retained their tertiary or quaternary structures, as well as full catalytic activity. The nicking sites on the L78 were identified by amino acid sequencing of these peptides, which also enabled us to propose a proteolytic process for L-SP. Enzyme kinetic studies of L-SP in the direction of starch synthesis indicated that the Km decreased during the proteolytic process when starch was used as the limiting substrate, but the Km for the other substrate (Glc-1-P) increased. On the other hand, the maximum velocities (Vmax) increased for both substrates. Mobility of the nicked L-SP was retarded on a native polyacrylamide gel containing soluble starch, indicating the increased affinity for starch. Results in this study suggested that L78 and its proteolytic modifications might play a regulatory role on the catalytic behaviour of L-SP in starch biosynthesis.  相似文献   
958.
The effects of ABA and putrescine, a polyamine, on cold-induced membrane leakage were investigated using primary leaves of wild-type and an ABA-deficient mutant, flacca , of tomato ( Lycopersicon esculentum Mill.). The amount of chilling-induced electrolyte leakage from flacca leaves was much higher than that from the wild-type leaves. When applied exogenously ABA reduced cold-induced electrolyte leakage from leaves of both wild-type and the flacca mutant. However, the cold-induced electrolyte leakage from flacca leaves was not as pronounced as in the wild-type indicating that ABA is an important mediator in response to cold stress in the leaves. Putrescine reduced cold-induced electrolyte leakage from both wild-type and flacca leaves. Synthesis of putrescine in the leaves was increased by cold treatment. DFMO, a biosynthetic inhibitor of the polyamine, increased electrolyte leakage from cold-treated leaves, and exogenously applied putrescine decreased the enhanced leakage to the control level. Therefore, this polyamine is thought also to be involved in the response to cold stress of tomato leaves. Both ABA and putrescine were protective against cold stress, but exogenously applied ABA decreased the endogenous level of putrescine in the leaves. Furthermore, the DMFO-increased electrolyte leakage in cold-stressed leaves was completely abolished by the application of ABA. These results suggest that ABA is a major regulator in the response to cold stress in tomato leaves and that it does not exert its role via putrescine in the response to cold stress.  相似文献   
959.
Chang X  Keller D  O'Donoghue SI  Led JJ 《FEBS letters》2002,515(1-3):165-170
Nuclear magnetic resonance (NMR) spectroscopy reveals that higher-order aggregates of glucagon-like peptide-1-(7-36)-amide (GLP-1) in pure water at pH 2.5 are disrupted by 35% 2,2,2-trifluoroethanol (TFE), and form a stable and highly symmetric helical self-aggregate. NMR spectra show that the helical structure is identical to that formed by monomeric GLP-1 under the same experimental conditions [Chang et al., Magn. Reson. Chem. 37 (2001) 477-483; Protein Data Bank at RCSB code: 1D0R], while amide proton exchange rates reveal a dramatic increase of the stability of the helices of the self-aggregate. Pulsed-field gradient NMR diffusion experiments show that the TFE-induced helical self-aggregate is a dimer. The experimental data and model calculations indicate that the dimer is a parallel coiled coil, with a few hydrophobic residues on the surface that may cause aggregation in pure water. The results suggest that the coiled coil dimer is an intermediate state towards the formation of higher aggregates, e.g. fibrils.  相似文献   
960.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can trigger apoptosis in some tumor cells but not other tumor cells. To explore the signal transduction events in TRAIL-triggered apoptosis and its modulation in nontransfected tumor cells, we analyzed TRAIL-induced death-inducing signaling complex (DISC) in TRAIL-sensitive and -resistant glioma cells. Caspase-8 and caspase-10 were recruited to the DISC, where they were proteolytically activated to initiate apoptosis in TRAIL-sensitive glioma cells. Caspase-8 and caspase-10 were also recruited to the DISC in TRAIL-resistant cells, but their further activation was inhibited by two antiapoptotic proteins termed cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15kDa (PED/PEA-15). Both long and short forms of c-FLIP were recruited to the DISC, where the long form c-FLIP was cleaved to produce intermediate fragments. Of the three isoforms of PED/PEA-15 proteins, only the doubly phosphorylated form was expressed and recruited to the DISC in TRAIL-resistant cells, indicating that the phosphorylation status of PED/PEA-15 determines its recruitment in the cells. Treatment with calcium/calmodulin-dependent protein kinase inhibitor rescued TRAIL sensitivity in TRAIL-resistant cells, providing a potential new approach to sensitize the cells to TRAIL-induced apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号