首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4826篇
  免费   386篇
  国内免费   2篇
  2023年   24篇
  2022年   37篇
  2021年   86篇
  2020年   52篇
  2019年   72篇
  2018年   82篇
  2017年   75篇
  2016年   138篇
  2015年   265篇
  2014年   272篇
  2013年   278篇
  2012年   442篇
  2011年   394篇
  2010年   259篇
  2009年   227篇
  2008年   300篇
  2007年   294篇
  2006年   269篇
  2005年   266篇
  2004年   256篇
  2003年   249篇
  2002年   230篇
  2001年   46篇
  2000年   23篇
  1999年   62篇
  1998年   65篇
  1997年   39篇
  1996年   38篇
  1995年   42篇
  1994年   47篇
  1993年   31篇
  1992年   25篇
  1991年   21篇
  1990年   15篇
  1989年   24篇
  1988年   11篇
  1987年   21篇
  1986年   11篇
  1985年   11篇
  1984年   16篇
  1983年   22篇
  1982年   9篇
  1981年   10篇
  1980年   8篇
  1979年   16篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   4篇
  1971年   3篇
排序方式: 共有5214条查询结果,搜索用时 205 毫秒
111.
Jasmonates are oxylipin signals that play important roles in the development of fertile flowers and in defense against pathogens and herbivores in leaves. The aim of this work was to understand the synthesis and function of jasmonates in roots. Grafting experiments with a jasmonate-deficient mutant demonstrated that roots produce jasmonates independently of leaves, despite low expression of biosynthetic enzymes. Levels of 12-oxo-phytodienoic acid, jasmonic acid, and its isoleucine derivative increased in roots upon osmotic and drought stress. Wounding resulted in a decrease of preformed 12-oxo-phytodienoic acid concomitant with an increase of jasmonic acid and jasmonoyl-isoleucine. 13-Lipoxygenases catalyze the first step of lipid oxidation leading to jasmonate production. Analysis of 13-lipoxygenase-deficient mutant lines showed that only one of the four 13-lipoxygenases, LOX6, is responsible and essential for stress-induced jasmonate accumulation in roots. In addition, LOX6 was required for production of basal 12-oxo-phytodienoic acid in leaves and roots. Loss-of-function mutants of LOX6 were more attractive to a detritivorous crustacean and more sensitive to drought, indicating that LOX6-derived oxylipins are important for the responses to abiotic and biotic factors.Oxylipins are ubiquitous signaling molecules that are derived from polyunsaturated fatty acids by enzymatic and nonenzymatic processes. In plants, the biosynthesis and function of oxylipins of the jasmonate family in aboveground tissues has been investigated in detail. Jasmonates comprise 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and derivatives of JA. In leaves, jasmonates accumulate in response to abiotic factors such as wounding, drought, osmotic stress, darkness, and ozone and during interactions with organisms such as herbivores, pathogens, and mutualistic organisms (Wasternack, 2007). The relevance of jasmonates in wound response, ozone tolerance, and the defense against herbivores and necrotrophic pathogens in leaves has been well investigated using mutants in JA biosynthesis and signaling (Browse, 2009a). In addition, jasmonates play an important role in flower development, and Arabidopsis (Arabidopsis thaliana) mutants in the JA pathway are male sterile (Browse, 2009b). The first step in jasmonate biosynthesis is catalyzed by 13-lipoxygenases (LOXs). The resulting 13(S)-hydroperoxyoctadecatrienoic acid (13-HPOTE) is converted by allene oxide synthase (AOS) and allene oxide cyclase to OPDA (Wasternack, 2007). These enzymatic steps are located in plastids. OPDA is transported to peroxisomes and converted to JA. JA can be further metabolized to different derivatives that take place mainly in the cytosol. The conjugation of JA with Ile is an important step because jasmonoyl-Ile (JA-Ile) has been identified as a biologically active jasmonate (Staswick and Tiryaki, 2004). OPDA is also biologically active without conversion to JA derivatives. In contrast to all other jasmonates, the OPDA structure contains an electrophilic α,β-unsaturated carbonyl group that renders OPDA more reactive than JA. Therefore, OPDA is classified as a reactive electrophile species with unique signaling properties different from other jasmonates (Farmer and Davoine, 2007).Of the six lipoxygenase genes present in Arabidopsis, four genes encode 13-LOX. For the respective enzymes LOX2, LOX3, LOX4, and LOX6, it was shown that linolenic acid is the preferred substrate and that 13-HPOTE is formed in vitro (Bannenberg et al., 2009). All four enzymes are proposed to be located in plastids. LOX2 is highly expressed in leaves; expression is up-regulated by jasmonates and stress treatments such as wounding and osmotic stress (Bell and Mullet, 1993; Seltmann et al., 2010a). LOX2 was shown to contribute the majority of jasmonate synthesis upon wounding and osmotic stress and during senescence in leaves (Bell et al., 1995; Glauser et al., 2009). LOX2 is also responsible for the accumulation of arabidopsides (Glauser et al., 2009), which are galactolipids containing esterified OPDA in plastids by direct oxidation of galactolipids (Zoeller et al., 2012). LOX3 and LOX4 are required for the development of fertile flowers (Caldelari et al., 2011). LOX6 shows overall low expression (Bannenberg et al., 2009). Recently, it was reported that LOX6 contributes to the fast accumulation of JA and JA-Ile in wounded leaves and is required for the fast increase of JA and JA-Ile in distal leaves after wounding (Chauvin et al., 2013).In contrast to leaves and flowers, little is known on jasmonate biosynthesis and function in roots. Expression of the plastid-localized enzymes of jasmonate synthesis LOX2, AOS, and allene oxide cyclase2 is very low in roots (Zimmermann et al., 2004). By contrast, enzymes such as 9-LOX and α-dioxygenase1 are strongly expressed in roots. These enzymes are involved in the biosynthesis of oxylipins different from jasmonates, and 9-LOX products have been shown to regulate lateral root development because mutants in LOX1 and LOX5 produce more lateral roots (Vellosillo et al., 2007). However, jasmonate function in roots is still obscure. Here, we analyzed jasmonate accumulation in roots upon different stress treatments and show that mutants defective in LOX6 are impaired in stress-induced jasmonate synthesis and are more susceptible to drought and detritivore feeding.  相似文献   
112.
Influenza viruses routinely acquire mutations in antigenic sites on the globular head of the hemagglutinin (HA) protein. Since these antigenic sites are near the receptor binding pocket of HA, many antigenic mutations simultaneously alter the receptor binding properties of HA. We previously reported that a K165E mutation in the Sa antigenic site of A/Puerto Rico/8/34 (PR8) HA is associated with secondary neuraminidase (NA) mutations that decrease NA activity. Here, using reverse genetics, we show that the K165E HA mutation dramatically decreases HA binding to sialic acid receptors on cell surfaces. We sequentially passaged reverse-genetics-derived PR8 viruses with the K165E antigenic HA mutation in fertilized chicken eggs, and to our surprise, viruses with secondary NA mutations did not emerge. Instead, viruses with secondary HA mutations emerged in 3 independent passaging experiments, and each of these mutations increased HA binding to sialic acid receptors. Importantly, these compensatory HA mutations were located in the Ca antigenic site and prevented binding of Ca-specific monoclonal antibodies. Taken together, these data indicate that HA antigenic mutations that alter receptor binding avidity can be compensated for by secondary HA or NA mutations. Antigenic diversification of influenza viruses can therefore occur irrespective of direct antibody pressure, since compensatory HA mutations can be located in distinct antibody binding sites.  相似文献   
113.
The ability of harmful algal species to form dense, nearly monospecific blooms remains an ecological and evolutionary puzzle. We hypothesized that predation interacts with estuarine salinity gradients to promote blooms of Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara et M. Chihara, a cosmopolitan toxic raphidophyte. Specifically, H. akashiwo's broad salinity tolerance appears to provide a refuge from predation that enhances the net growth of H. akashiwo populations through several mechanisms. (1) Contrasting salinity tolerance of predators and prey. Estuarine H. akashiwo isolates from the west coast of North America grew rapidly at salinities as low as six, and distributed throughout experimental salinity gradients to salinities as low as three. In contrast, survival of most protistan predator species was restricted to salinities >15. (2) H. akashiwo physiological and behavioral plasticity. Acclimation to low salinity enhanced H. akashiwo's ability to accumulate and grow in low salinity waters. In addition, the presence of a ciliate predator altered H. akashiwo swimming behavior, promoting accumulation in low‐salinity surface layers inhospitable to the ciliate. (3) Negative effects of low salinity on predation processes. Ciliate predation rates decreased sharply at salinities <25 and, for one species, H. akashiwo toxicity increased at low salinities. Taken together, these behaviors and responses imply that blooms can readily initiate in low salinity waters where H. akashiwo would experience decreased predation pressure while maintaining near‐maximal growth rates. The salinity structure of a typical estuary would provide this HAB species a unique refuge from predation. Broad salinity tolerance in raphidophytes may have evolved in part as a response to selective pressures associated with predation.  相似文献   
114.
In the low-G+C-content Gram-positive bacteria, resistance to antimicrobial peptides is often mediated by so-called resistance modules. These consist of a two-component system and an ATP-binding cassette transporter and are characterized by an unusual mode of signal transduction where the transporter acts as a sensor of antimicrobial peptides, because the histidine kinase alone cannot detect the substrates directly. Thus, the transporters fulfill a dual function as sensors and detoxification systems to confer resistance, but the mechanistic details of these processes are unknown. The paradigm and best-understood example for this is the BceRS-BceAB module of Bacillus subtilis, which mediates resistance to bacitracin, mersacidin, and actagardine. Using a random mutagenesis approach, we here show that mutations that affect specific functions of the transporter BceAB are primarily found in the C-terminal region of the permease, BceB, particularly in the eighth transmembrane helix. Further, we show that while signaling and resistance are functionally interconnected, several mutations could be identified that strongly affected one activity of the transporter but had only minor effects on the other. Thus, a partial genetic separation of the two properties could be achieved by single amino acid replacements, providing first insights into the signaling mechanism of these unusual modules.  相似文献   
115.
116.
117.
Feed supplementation with the probiotic Enterococcus faecium for piglets has been found to reduce pathogenic gut microorganisms. Since Escherichia coli is among the most important pathogens in pig production, we performed comprehensive analyses to gain further insight into the influence of E. faecium NCIMB 10415 on porcine intestinal E. coli. A total of 1,436 E. coli strains were isolated from three intestinal habitats (mucosa, digesta, and feces) of probiotic-supplemented and nonsupplemented (control) piglets. E. coli bacteria were characterized via pulsed-field gel electrophoresis (PFGE) for clonal analysis. The high diversity of E. coli was reflected by 168 clones. Multilocus sequence typing (MLST) was used to determine the phylogenetic backgrounds, revealing 79 sequence types (STs). Pathotypes of E. coli were further defined using multiplex PCR for virulence-associated genes. While these analyses discerned only a few significant differences in the E. coli population between the feeding groups, analyses distinguishing clones that were uniquely isolated in either the probiotic group only, the control group only, or both groups (shared group) revealed clear effects at the habitat level. Interestingly, extraintestinal pathogenic E. coli (ExPEC)-typical clones adhering to the mucosa were significantly reduced in the probiotic group. Our data show a minor influence of E. faecium on the overall population of E. coli in healthy piglets. In contrast, this probiotic has a profound effect on mucosa-adherent E. coli. This finding further substantiates a specific effect of E. faecium strain NCIMB 10415 in piglets against pathogenic E. coli in the intestine. In addition, these data question the relevance of data based on sampling fecal E. coli only.  相似文献   
118.
The hemiascomycete Ashbya gossypii develops a mycelium. Nutritional stress leads to its differentiation into sporangia. These generate spores. In parallel, the yellow pigment riboflavin is produced. Intracellularly accumulated riboflavin, made visible as a bright green fluorescence, was observed in only 60 % of the hyphal cells. For the remaining 40 %, it was unclear whether these cells simply export riboflavin or its biosynthesis remains down-regulated in contrast to the accumulating cells. The approach followed in this work was to convert the hyphae into protoplasts by enzymatic degradation of the cell wall. Afterwards, the protoplasts were sorted by fluorescence-activated cell sorting on the basis of riboflavin accumulation. When a reporter strain expressing lacZ under the control of the most important riboflavin biosynthesis promoter, RIB3, was used, green protoplasts were found to have more than tenfold greater reporter activity than hyaline protoplasts. This was true on the basis of total protein as well as on the basis of hexokinase specific activity, a marker for constitutive expression. These results allow the conclusion that hyphal cells of A. gossypii differ in phenotype regarding riboflavin overproduction and accumulation.  相似文献   
119.
120.
Single-stage nitritation–anammox combines the growth of aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB) in one reactor. The necessary compromise of their milieu conditions often leads to the growth of nitrite-oxidizing bacteria (NOB). For this study, a sequencing batch reactor (SBR) for nitritation–anammox was operated for 180 days with sewage sludge reject water (removal capacity, 0.4 kg?N?m?3?day?1). The growth of NOB was favored by enhanced oxygen supply rather than extended aerobic phases. Suspended-type biomass from this SBR was taken regularly and sieved into three size fractions (all of them <1,000 μm). Batch experiments as well as fluorescence in situ hybridization were performed to study the distribution and activity of AnAOB, AOB, and NOB within those size fractions. Both the measured conversion rates and detected abundances decreased with increasing size fraction. The highest anammox conversion rates (15 g NH4 +–N per kilogram VSS per hour) and the highest abundances of Brocadia fulgida were found in the medium size fraction (100–315 μm). The batch experiments proved to be accurate tools for the monitoring of multiple processes in the reactor. The results were representative for reactor performance during the 6 months of reactor operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号