首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   394篇
  免费   31篇
  425篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   13篇
  2012年   14篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   12篇
  2007年   13篇
  2006年   16篇
  2005年   16篇
  2004年   18篇
  2003年   21篇
  2002年   8篇
  2001年   9篇
  2000年   22篇
  1999年   9篇
  1998年   3篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   7篇
  1992年   12篇
  1991年   15篇
  1990年   14篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   13篇
  1985年   7篇
  1984年   6篇
  1983年   15篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1969年   3篇
  1968年   3篇
  1961年   2篇
排序方式: 共有425条查询结果,搜索用时 9 毫秒
51.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
52.
Watanabe  Atsuyuki  So  Matsuo  Mitaka  Hayato  Ishisaka  Yoshiko  Takagi  Hisato  Inokuchi  Ryota  Iwagami  Masao  Kuno  Toshiki 《Mycopathologia》2022,187(2-3):271-289

The recent increase of COVID-19-associated mucormycosis (CAM) has been commanding global attention. However, basic epidemiologic characteristics have not firmly been established. In this systematic review and meta-analysis, we sought to determine the clinical manifestations, potential risk factors, and outcomes of CAM. Observational studies reporting CAM were searched with PubMed and EMBASE databases in January 2022. We collected data on comorbidities and treatment for COVID-19, and performed a one-group meta-analysis on the frequency of orbital exenteration procedure and mortality of CAM using a random-effect model. Fifty-one observational studies, including a total of 2,312 patients with proven CAM, were identified. Among the 51 studies, 37 were conducted in India, 8 in Egypt, and 6 in other countries. The most common comorbidity was diabetes mellitus (82%). While 57% required oxygenation, 77% received systemic corticosteroids. Among CAM, 97% were rhino-orbital-cerebral (ROCM), and 2.7% were pulmonary mucormycosis. Usual presentations were headache (54%), periorbital swelling/pain (53%), facial swelling/pain (43%), ophthalmoplegia (42%), proptosis (41%), and nasal discharge/congestion (36%). Regarding the outcomes, orbital exenteration was performed in 17% (95% CI: 12–21%, I2?=?83%) of the COVID-19-associated ROCM patients. The mortality of CAM was 29% (95% CI; 22–36%, I2?=?92%). In conclusion, this systematic review and meta-analysis indicated that the most prevalent type of CAM was ROCM, and most CAM patients had diabetes mellitus and received systemic glucocorticoids. Clinicians in the endemic areas should have a high index of suspicion for this invasive fungal complication of COVID-19 when a diabetic patient who received high-dose systemic glucocorticoids developed rhino-orbital symptoms.

  相似文献   
53.
54.
Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15±1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51±3% of the baseline and calcein-loadable mitochondria was 6±1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73±2% and 30±7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.  相似文献   
55.
Alpha-L-arabinofuranosidase catalyses the hydrolysis of the alpha-1,2-, alpha-1,3-, and alpha-1,5-L-arabinofuranosidic bonds in L-arabinose-containing hemicelluloses such as arabinoxylan. AkAbf54 (the glycoside hydrolase family 54 alpha-L-arabinofuranosidase from Aspergillus kawachii) consists of two domains, a catalytic and an arabinose-binding domain. The latter has been named AkCBM42 [family 42 CBM (carbohydrate-binding module) of AkAbf54] because homologous domains are classified into CBM family 42. In the complex between AkAbf54 and arabinofuranosyl-alpha-1,2-xylobiose, the arabinose moiety occupies the binding pocket of AkCBM42, whereas the xylobiose moiety is exposed to the solvent. AkCBM42 was found to facilitate the hydrolysis of insoluble arabinoxylan, because mutants at the arabinose binding site exhibited markedly decreased activity. The results of binding assays and affinity gel electrophoresis showed that AkCBM42 interacts with arabinose-substituted, but not with unsubstituted, hemicelluloses. Isothermal titration calorimetry and frontal affinity chromatography analyses showed that the association constant of AkCBM42 with the arabinose moiety is approximately 10(3) M(-1). These results indicate that AkCBM42 binds the non-reducing-end arabinofuranosidic moiety of hemicellulose. To our knowledge, this is the first example of a CBM that can specifically recognize the side-chain monosaccharides of branched hemicelluloses.  相似文献   
56.
Protein phosphatase (PP2B) whose activity is stimulated 12-20-fold by Ca2+/calmodulin (CaM) was partially purified by CaM-Sepharose and heparin-agarose chromatographies from cell extract of the yeast Saccharomyces cerevisiae. PP2B activity was not detectable in a mutant in which two genes (CMP1 and CMP2) encoding homologs of mammalian PP2B catalytic subunit were disrupted. We have previously shown that the double gene disruption has no significant effect on the growth of yeast [1991, Mol. Gen. Genet. 227, 52-59]. The results indicated that CMP1 and CMP2 are the only genes that encode the PP2B catalytic polypeptide in S. cerevisiae, and PP2B activity is not essential for the growth of the yeast under normal conditions.  相似文献   
57.
58.
59.
Oxidative stress plays a pivotal role in chronic heart failure. SIRT1, an NAD+-dependent histone/protein deacetylase, promotes cell survival under oxidative stress when it is expressed in the nucleus. However, adult cardiomyocytes predominantly express SIRT1 in the cytoplasm, and its function has not been elucidated. The purpose of this study was to investigate the functional role of SIRT1 in the heart and the potential use of SIRT1 in therapy for heart failure. We investigated the subcellular localization of SIRT1 in cardiomyocytes and its impact on cell survival. SIRT1 accumulated in the nucleus of cardiomyocytes in the failing hearts of TO-2 hamsters, postmyocardial infarction rats, and a dilated cardiomyopathy patient but not in control healthy hearts. Nuclear but not cytoplasmic SIRT1-induced manganese superoxide dismutase (Mn-SOD), which was further enhanced by resveratrol, and increased the resistance of C2C12 myoblasts to oxidative stress. Resveratrol''s enhancement of Mn-SOD levels depended on the level of nuclear SIRT1, and it suppressed the cell death induced by antimycin A or angiotensin II. The cell-protective effects of nuclear SIRT1 or resveratrol were canceled by the Mn-SOD small interfering RNA or SIRT1 small interfering RNA. The oral administration of resveratrol to TO-2 hamsters increased Mn-SOD levels in cardiomyocytes, suppressed fibrosis, preserved cardiac function, and significantly improved survival. Thus, Mn-SOD induced by resveratrol via nuclear SIRT1 reduced oxidative stress and participated in cardiomyocyte protection. SIRT1 activators such as resveratrol could be novel therapeutic tools for the treatment of chronic heart failure.  相似文献   
60.
The -112A>C polymorphism (rs10011540) of the gene for uncoupling protein 1 (UCP1) has been associated with type 2 diabetes mellitus in Japanese individuals. The aim of the present study was to investigate the effects of this polymorphism, as well as the well-known -3826A>G polymorphism (rs1800592), on clinical characteristics of type 2 diabetes. We determined the genotypes of the two polymorphisms in 93 Japanese patients with type 2 diabetes. Intramyocellular lipid content and hepatic lipid content (HLC) were measured by magnetic resonance spectroscopy. No significant differences in age, sex, BMI, or HbA1c level were detected between type 2 diabetic patients with the -112C allele and those without it. However, homeostasis model assessment for insulin resistance (p=0.0089) and HLC (p=0.012) was significantly greater in patients with the -112C allele. We did not detect an association of the -3826A>G polymorphism (rs1800592) of UCP1 gene with any measured parameters. These results suggest that insulin resistance caused by the -112C allele influences the susceptibility to type 2 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号