首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   35篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
21.
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma worldwide. We previously reported that cyclosporin A (CsA) inhibits HCV-1b replication. However, its inhibition of JFH-1 (HCV-2a) was much less. Since HCV genotype clearly affects the in vitro and in vivo response to anti-viral therapy, we wished to examine the effect of CsA and its non-immunosuppressive derivative NIM811 on HCV genotype 4a replication. We first established an in vitro system supporting HCV-4a infection and replication using immortalized human hepatocytes, HuS-E7/DN24 (HuS) cells, and these cells were infected with sera obtained from Egyptian patients with chronic HCV-4a infection. HuS cells supported more robust HCV-4a replication than both HuH-7.5 and PH5CH8 cells, and HCV-4a infection and replication were completely inhibited by 3 mug/ml CsA and 0.5 mug/ml NIM811. Thus, HuS cells are a good model system supporting the infection and high-level replication of HCV-4a, and both CsA and NIM811 effectively inhibit HCV-4a replication in this system.  相似文献   
22.

Background

Despite being expensive, the standard combination of pegylated interferon (Peg-IFN)- α and ribavirin used to treat chronic hepatitis C (CH) results in a moderate clearance rate and a plethora of side effects. This makes it necessary to predict patient outcome so as to improve the accuracy of treatment. Although the antiviral mechanism of genetically altered IL28B is unknown, IL28B polymorphism is considered a good predictor of IFN combination treatment outcome.

Methodology

Using microarray, we quantified the expression profile of 237 IFN related genes in 87 CH liver biopsy specimens to clarify the relationship between IFN pathway and viral elimination, and to predict patients'' clinical outcome. In 72 out of 87 patients we also analyzed IL28B polymorphism (rs8099917).

Principal Findings

Five IFN related-genes (IFI27, IFI 44, ISG15, MX1, and OAS1) had expression levels significantly higher in nonresponders (NR) than in normal liver (NL) and sustained virological responders (SVR); this high expression was also frequently seen in cases with the minor (TG or GG) IL28B genotype. The expression pattern of 31 IFN related-genes also differed significantly between NR and NL. We predicted drug response in NR with 86.1% accuracy by diagonal linear discriminant analysis (DLDA).

Conclusion

IFN system dysregulation before treatment was associated with poor IFN therapy response. Determining IFN related-gene expression pattern based on patients'' response to combination therapy, allowed us to predict drug response with high accuracy. This method can be applied to establishing novel antiviral therapies and strategies for patients using a more individual approach.  相似文献   
23.
Watashi K  Shimotohno K 《Uirusu》2005,55(1):105-110
Currently, patients with hepatitis C virus (HCV) are mainly treated with interferon alone or in combination with ribavirin. However, because the virus is not eliminated from approximately one half of the patients by this treatment, alternative approaches to the treatment of HCV infection are needed. Recently, an HCV subgenomic replicon system has been established in which an HCV subgenomic replicon autonomously replicated in cultured cells. It enables us to screen for anti-HCV agents in cell culture system. Taking advantage of this system, we examined the effects of various types of compounds on the replication of HCV. Consequently, we found that a well-known immunosuppressant, cyclosporin A (CsA), had a strong suppressive activity on HCV replication, at least in cell culture system. This anti-HCV activity did not require the immunosuppressive feature of CsA. Through the investigation into the mechanism of anti-HCV effect of CsA, it was suggested that cyclophilin B, one of the cellular target molecules of CsA, played a significant role in HCV replication. Thus, searching for anti-HCV agents may lead to the elucidation of one of the mechanisms of HCV replication.  相似文献   
24.
25.
26.
Lipids are key components in the viral life cycle that affect host-pathogen interactions. In this study, we investigated the effect of HCV infection on sphingolipid metabolism, especially on endogenous SM levels, and the relationship between HCV replication and endogenous SM molecular species. We demonstrated that HCV induces the expression of the genes (SGMS1 and 2) encoding human SM synthases 1 and 2. We observed associated increases of both total and individual sphingolipid molecular species, as assessed in human hepatocytes and in the detergent-resistant membrane (DRM) fraction in which HCV replicates. SGMS1 expression had a correlation with HCV replication. Inhibition of sphingolipid biosynthesis with a hepatotropic serine palmitoyltransferase (SPT) inhibitor, NA808, suppressed HCV-RNA production while also interfering with sphingolipid metabolism. Further, we identified the SM molecular species that comprise the DRM fraction and demonstrated that these endogenous SM species interacted with HCV nonstructural 5B polymerase to enhance viral replication. Our results reveal that HCV alters sphingolipid metabolism to promote viral replication, providing new insights into the formation of the HCV replication complex and the involvement of host lipids in the HCV life cycle.  相似文献   
27.
Human T-cell leukemia virus type 1 (HTLV-1) encodes an antisense viral gene product termed HTLV-1 basic leucine-zipper factor (HBZ). HBZ forms heterodimers with c-Jun, a member of the AP-1 family, and promotes its proteasomal degradation. Although most proteasomal substrates are targeted for degradation via conjugation of polyubiquitin chains, we show that ubiquitination is not required for HBZ-mediated proteasomal degradation of c-Jun. We demonstrate that HBZ directly interacts with both the 26 S proteasome and c-Jun and facilitates the delivery of c-Jun to the proteasome without ubiquitination. HBZ acts as a tethering factor between the 26 S proteasome and its substrate, thereby bypassing the targeting function of ubiquitination. These findings disclose a novel viral strategy to utilize the cellular proteolytic system for viral propagation.  相似文献   
28.
The chemically synthesized endoperoxide compound N-89 and its derivative N-251 were shown to have potent antimalarial activity. We previously demonstrated that N-89 and N-251 potently inhibited the RNA replication of hepatitis C virus (HCV), which belongs to the Flaviviridae family. Since antimalarial and anti-HCV mechanisms have not been clarified, we were interested whether N-89 and N-251 possessed the activity against viruses other than HCV. In this study, we examined the effects of N-89 and N-251 on other flaviviruses (dengue virus and Japanese encephalitis virus) and hepatitis viruses (hepatitis B virus and hepatitis E virus). Our findings revealed that N-89 and N-251 moderately inhibited the RNA replication of Japanese encephalitis virus and hepatitis E virus, although we could not detect those anti-dengue virus activities. We also observed that N-89 and N-251 moderately inhibited the replication of hepatitis B virus at the step after viral translation. These results suggest the possibility that N-89 and N-251 act on some common host factor(s) that are necessary for viral replications, rather than the possibility that N-89 and N-251 directly act on the viral proteins except for HCV. We describe a new type of antiviral reagents, N-89 and N-251, which are applicable to multiple different viruses.  相似文献   
29.
30.
Recently, a production system for infectious particles of hepatitis C virus (HCV) utilizing the genotype 2a JFH1 strain has been developed. This strain has a high capacity for replication in the cells. Cyclosporine (CsA) has a suppressive effect on HCV replication. In this report, we characterize the anti-HCV effect of CsA. We observe that the presence of viral structural proteins does not influence the anti-HCV activity of CsA. Among HCV strains, the replication of genotype 1b replicons was strongly suppressed by treatment with CsA. In contrast, JFH1 replication was less sensitive to CsA and its analog, NIM811. Replication of JFH1 did not require the cellular replication cofactor, cyclophilin B (CyPB). CyPB stimulated the RNA binding activity of NS5B in the genotype 1b replicon but not the genotype 2a JFH1 strain. These findings provide an insight into the mechanisms of diversity governing virus-cell interactions and in the sensitivity of these strains to antiviral agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号