首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1421篇
  免费   78篇
  国内免费   1篇
  2022年   4篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2017年   3篇
  2016年   15篇
  2015年   20篇
  2014年   27篇
  2013年   179篇
  2012年   47篇
  2011年   59篇
  2010年   40篇
  2009年   44篇
  2008年   75篇
  2007年   88篇
  2006年   85篇
  2005年   89篇
  2004年   82篇
  2003年   82篇
  2002年   73篇
  2001年   19篇
  2000年   12篇
  1999年   17篇
  1998年   24篇
  1997年   13篇
  1996年   25篇
  1995年   21篇
  1994年   12篇
  1993年   21篇
  1992年   24篇
  1991年   17篇
  1990年   25篇
  1989年   22篇
  1988年   13篇
  1987年   17篇
  1986年   14篇
  1985年   10篇
  1984年   24篇
  1983年   19篇
  1982年   24篇
  1981年   18篇
  1980年   14篇
  1979年   8篇
  1978年   11篇
  1977年   11篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1969年   2篇
  1966年   2篇
排序方式: 共有1500条查询结果,搜索用时 234 毫秒
991.
Inomata N  Goto H  Itoh M  Isono K 《Genetics》2004,167(4):1749-1758
Variation in trehalose sensitivity and nucleotide sequence polymorphism of the Gr5a gene encoding the gustatory receptor to sugar trehalose were investigated in 152 male lines of Drosophila melanogaster collected from a natural population. Among the observed 59 segregating sites, some pairs of sites showed significant linkage disequilibrium. A single SNP, which results in the Ala218Thr amino acid change, was significantly associated with trehalose sensitivity, as previously suggested. Threonine at amino acid position 218 was found to be the ancestral form in D. melanogaster, suggesting that low trehalose sensitivity was an ancestral form with respect to the receptor function. There was large genetic variation in trehalose sensitivity. It was continuously distributed, indicating that trehalose sensitivity measured by the behavioral assay is a quantitative trait. These results suggest that apart from the Gr5a gene, other genetic factors contribute to variation in trehalose sensitivity. Nucleotide diversity (pi) and nucleotide variation (theta) per site were 0.00874 and 0.00590, respectively. Fu and Li's test and the MK test showed no significant departure from the expectation of selective neutrality in the Gr5a gene. However, we rejected selective neutrality by Tajima's test and Fay and Wu's test with the observed level of recombination. We discuss possible causes of the observed pattern of nucleotide variation in the gustatory receptor Gr5a gene.  相似文献   
992.
A pleuronectiform fish, the barfin flounder Verasper moseri, has three molecular forms of gonadotropin-releasing hormone (GnRH) in the brain, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and seabream GnRH (sbGnRH). To elucidate the ontogenic origin of the neurons that produce these GnRH molecules, the development of three GnRH systems was examined by in situ hybridization and immunocytochemistry. Neuronal somata that express sGnRH mRNA were detected first in the vicinity of the olfactory epithelium 21 days after hatching (Day 21), and then in the transitional area between the olfactory nerve and olfactory bulb and the terminal nerve ganglion on Day 28. cGnRH-II mRNA-expressing neuronal somata were first identified in the midbrain tegmentum near the ventricle on Day 7. cGnRH-II-immunoreactive (ir) fibers were first found in the brain on Day 7. sbGnRH mRNA-expressing neuronal somata were first detected in the preoptic area on Day 42. sbGnRH-ir fibers were localized in the preoptic area-hypothalamus, and formed a distinctive bundle of axons projecting to the pituitary on Day 70. These results indicate that three forms of GnRH neurons have separate embryonic origins in the barfin flounder as in other perciform fish such as tilapia Oreochromis niloticus and red seabream Pagrus major: sGnRH, cGnRH-II and sbGnRH neurons derive from the olfactory placode, the midbrain tegmentum near the ventricle and the preoptic area, respectively.  相似文献   
993.
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.  相似文献   
994.
995.
996.
997.
Chemokines are a family of cytokines that induce directed migration of various types of leukocytes through specific interactions with a group of seven transmembrane receptors. Scavenger receptors are a heterogenous family of transmembrane molecules that commonly bind and uptake oxidized low density lipoprotein and bacteria. Here, we show that not only CXC chemokine 16 (CXCL16)/SR-PSOX, a transmembrane chemokine with scavenger receptor activity, but also 12 out of 15 chemokines examined efficiently bound scavenger receptor ligands in competition with cells expressing their specific chemokine receptors. Furthermore both the chemotactic and scavenger receptor activities of SR-PSOX/CXCL16 were similarly impaired in a series of mutants altered in the chemokine domain, indicating that SR-PSOX/CXCL16 binds scavenger receptor ligands as well as CXCR6 using highly overlapping binding motifs. Taken together, chemokines generally have scavenger receptor-like activity through their receptor-binding domain, suggesting a close evolutionary relationship between chemokines and scavenger receptors.  相似文献   
998.
The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43 from Bacillus sp. KSM-KP43, with a C-terminal extension domain, was determined by the multiple isomorphous replacements method with anomalous scattering. The native form was refined to a crystallographic R factor of 0.134 (Rfree of 0.169) at 1.30-A resolution. KP-43 consists of two domains, a subtilisin-like alpha/beta domain and a C-terminal jelly roll beta-barrel domain. The topological architecture of the molecule is similar to that of kexin and furin, which belong to the subtilisin-like proprotein convertases, whereas the amino acid sequence and the binding orientation of the C-terminal beta-barrel domain both differ in each case. Since the C-terminal domains of subtilisin-like proprotein convertases are essential for folding themselves, the domain of KP-43 is also thought to play such a role. KP-43 is known to be an oxidation-resistant protease among the general subtilisin-like proteases. To investigate how KP-43 resists oxidizing reagents, the structure of oxidized KP-43 was also determined and refined to a crystallographic R factor of 0.142 (Rfree of 0.212) at 1.73-A resolution. The structure analysis revealed that Met-256, adjacent to catalytic Ser-255, was oxidized similarly to an equivalent residue in subtilisin BPN'. Although KP-43, as well as proteinase K and subtilisin Carlsberg, lose their hydrolyzing activity against synthetic peptides after oxidation treatment, all of them retain 70-80% activity against proteinaceous substrates. These results, as well as the beta-casein digestion pattern analysis, have indicated that the oxidation of the methionine adjacent to the catalytic serine is not a dominant modification but might alter the substrate specificities.  相似文献   
999.
The protein quality control system in the endoplasmic reticulum (ER) ensures that only properly folded proteins are deployed throughout the cells. When nonnative proteins accumulate in the ER, the unfolded protein response is triggered to limit further accumulation of nonnative proteins and the ER is cleared of accumulated nonnative proteins by the ER-associated degradation (ERAD). In the yeast ER, aberrant nonnative proteins are mainly directed for the ERAD, but a distinct fraction of them instead receive O-mannosylation. In order to test whether O-mannosylation might also be a mechanism to process aberrant proteins in the ER, here we analyzed the effect of O-mannosylation on two kinds of model aberrant proteins, a series of N-glycosylation site mutants of prepro-alpha-factor and a pro-region-deleted derivative of Rhizopus niveus aspartic proteinase-I (Deltapro) both in vitro and in vivo. O-Mannosylation increases solubilities of the aberrant proteins and renders them less dependent on the ER chaperone, BiP, for being soluble. The release from ER chaperones allows the aberrant proteins to exit out of the ER for the normal secretory pathway transport. When the gene for Pmt2p, responsible for the O-mannosylation of these aberrant proteins, and that for the ERAD were simultaneously deleted, the cell exhibited enhanced unfolded protein response. O-Mannosylation may therefore function as a fail-safe mechanism for the ERAD by solubilizing the aberrant proteins that overflowed from the ERAD pathway and reducing the load for ER chaperones.  相似文献   
1000.
Elevated serine elastase activity after myocardial infarction can contribute to remodeling associated with left ventricular dilatation and dysfunction. We therefore assessed the effects of overexpressing the selective serine elastase inhibitor elafin in transgenic mice in which a myocardial infarction was caused by ligation of the left anterior descending coronary artery (LAD). Elevated serine elastase activity was observed in nontransgenic littermates as early as 6 h after LAD ligation and persisted at 4 and 7 days but not in sham-operated or elafin-overexpressing transgenic mice. Myeloperoxidase activity (index of inflammatory cells) and matrix metalloproteinase 2 were also increased but only at 4 and 7 days and only in nontransgenic mice (P < 0.05 for both comparisons), and this increase correlated with inflammatory cell infiltration. Echocardiographic study at 4 days revealed indexes of diastolic dysfunction in nontransgenic versus elafin-overexpressing mice (P < 0.05). Morphometric and biochemical analyses at 28 days indicated impairment in cardiac performance, with greater scar thinning and infarct expansion in nontransgenic versus elafin transgenic littermates (P < 0.05 for all comparisons). Thus serine elastase inhibition appears to suppress inflammation, cardiac dilatation, and dysfunction after myocardial infarct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号