首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   106篇
  国内免费   1篇
  2022年   4篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   18篇
  2015年   21篇
  2014年   35篇
  2013年   184篇
  2012年   52篇
  2011年   59篇
  2010年   44篇
  2009年   49篇
  2008年   84篇
  2007年   96篇
  2006年   91篇
  2005年   99篇
  2004年   94篇
  2003年   88篇
  2002年   78篇
  2001年   26篇
  2000年   21篇
  1999年   27篇
  1998年   26篇
  1997年   20篇
  1996年   27篇
  1995年   27篇
  1994年   12篇
  1993年   21篇
  1992年   21篇
  1991年   16篇
  1990年   26篇
  1989年   25篇
  1988年   14篇
  1987年   14篇
  1986年   11篇
  1985年   10篇
  1984年   17篇
  1983年   15篇
  1982年   26篇
  1981年   17篇
  1980年   13篇
  1979年   8篇
  1978年   13篇
  1977年   13篇
  1976年   7篇
  1975年   8篇
  1974年   8篇
  1969年   2篇
排序方式: 共有1623条查询结果,搜索用时 31 毫秒
111.
Cyclic ADP-ribose (cADPR), a putative Ca(2+)-mobilizing second messenger, has been reported to operate in several mammalian cells. To investigate whether cADPR is involved in electrolyte secretion from airway glands, we used a patch-clamp technique, the measurement of microsomal Ca(2+) release, quantification of cellular cADPR, and RT-PCR for CD38 mRNA in human and feline tracheal glands. cADPR (>6 microM), infused into the cell via the patch pipette, caused ionic currents dependent on cellular Ca(2+). Infusions of lower concentrations (2-4 microM) of cADPR or inositol 1,4,5-trisphosphate (IP(3)) alone were without effect on the baseline current, but a combined application of cADPR and IP(3) mimicked the cellular response to low concentrations of acetylcholine (ACh). Microsomes derived from the isolated glands released Ca(2+) in response to both IP(3) and cADPR. cADPR released Ca(2+) from microsomes desensitized to IP(3) or those treated with heparin. The mRNA for CD38, an enzyme protein involved in cADPR metabolism, was detected in human tissues, including tracheal glands, and the cellular content of cADPR was increased with physiologically relevant concentrations of ACh. We conclude that cADPR, in concert with IP(3), operates in airway gland acinar cells to mobilize Ca(2+), resulting in Cl(-) secretion.  相似文献   
112.
The signaling pathway that transduces the stimulatory effect of low K+ on the biosynthesis of Na,K-ATPase remains largely unknown. The present study was undertaken to examine whether reactive oxygen species (ROS) mediated the effect of low K+ in Madin-Darby canine kidney (MDCK) cells. Low K+ increased ROS activity in a time- and dose-dependent manner, and this effect was abrogated by catalase and N-acetylcysteine (NAC). To determine the role of ROS in low-K+-induced gene expression, the cells were first stably transfected with expression constructs in which the reporter gene chloramphenicol acetyl transferase (CAT) was under the control of the avian Na,K-ATPase -subunit 1.9 kb and 900-bp 5'-flanking regions that have a negative regulatory element. Low K+ increased the CAT expression in both constructs. Catalase or NAC inhibited the effect of low K+. To determine whether the increased CAT activity was mediated through releasing the repressive effect or a direct stimulation of the promoter, the cells were transfected with a CAT expression construct directed by a 96-bp promoter fragment that has no negative regulatory element. Low K+ also augmented the CAT activity expressed by this construct. More importantly, both catalase and NAC abolished the effect of low K+. Moreover, catalase and NAC also inhibited low-K+-induced increases in the Na,K-ATPase 1- and 1-subunit protein abundance and ouabain binding sites. The antioxidants had no significant effect on the basal levels of CAT activity, protein abundance, or ouabain binding sites. In conclusion, low K+ enhances the Na,K-ATPase gene expression by a direct stimulation of the promoter activity, and ROS mediate this stimulation and also low-K+-induced increases in the Na,K-ATPase protein contents and cell surface molecules. Madin-Darby canine kidney cells; N-acetylcysteine; catalase  相似文献   
113.
We systematically examined the repertoire of chemokine receptors expressed by human plasma cells. Fresh bone marrow plasma cells and myeloma cells consistently expressed CXCR4, CXCR6, CCR10, and CCR3. Accordingly, plasma cells responded to their respective ligands in chemotaxis and very late Ag-4-dependent cell adhesion to fibronectin. Immobilized CXC chemokine ligand (CXCL)16, a novel transmembrane-type chemokine and CXCR6 ligand, also directly induced adhesion of plasma cells without requiring G(alpha i) signaling or divalent cations. Furthermore, we revealed consistent expression of CXCL12 (CXCR4 ligand), CXCL16 (CXCR6 ligand), and CC chemokine ligand 28 (CCR10 and CCR3 ligand) in tissues enriched with plasma cells including bone marrow, and constitutive expression of CXCL12, CXCL16, and CC chemokine ligand 28 by cultured human bone marrow stromal cells. Collectively, plasma cells are likely to be recruited to bone marrow and other target tissues via CXCR4, CXCR6, CCR10, and CCR3. CXCR6 may also contribute to tissue localization of plasma cells through its direct binding to membrane-anchored CXCL16.  相似文献   
114.
Among the many host cell-derived proteins found in human immunodeficiency virus type 1 (HIV-1), HLA class II (HLA-II) appears to be selectively incorporated onto virions and may contribute to mechanisms of indirect imunopathogenesis in HIV infection and AIDS. However, the amount of HLA-II on the surface of HIV-1 particles has not been reliably determined due to contamination of virus preparations by microvesicles containing host cell proteins, including HLA-II. Even rigorous sucrose density centrifugation is unable to completely separate HIV-1 from microvesicles. CD45, a leukocyte integral membrane protein, is found on microvesicles, yet appears to be excluded from HIV-1 particles. Exploiting this observation, we have developed a CD45-based immunoaffinity depletion method for removing CD45-containing microvesicles that yields highly purified preparations of virions. Examination of CD45-depleted HIV-1(MN) by high-pressure liquid chromatography, protein sequencing, and amino acid analyses determined a molar ratio of HLA-II to Gag of 0.04 to 0.05 in the purified virions, corresponding to an estimated average of 50 to 63 native HLA-II complexes (i.e., a dimer of alpha and beta heterodimers) per virion. These values are approximately 5- to 10-fold lower than those previously determined for other virion preparations that contained microvesicles. Our observations demonstrate the utility of CD45 immunoaffinity-based approaches for producing highly purified retrovirus preparations for applications that would benefit from the use of virus that is essentially free of microvesicles.  相似文献   
115.
Kinetic analysis of hydrolytic stability of 2',5'- and 3',5'-linked dinucleoside monophosphate (N(2)'pN and N(3)'pN) was successfully performed in aqueous solution at 175-240 degrees C using a new real-time monitoring method for rapid hydrothermal reactions. The half-lives of NpN were in the range 2-8 s at 240 degrees C and apparent activation energy decreases in the order U(2)'pU>A(2)'pA>G(2)'pG>U(3)pU approximately C(3)'pC>A(3)pA. The stability of phosphodiester bond was dependent on the types of base moiety and phosphodiester linkages, but no systematic correlation was found between the structure and stability. The interconversion of 2',5'-adenylyladenosine monophosphate (A(2)'pA) and 3',5'-adenylyladenosine monophosphate (A(3)'pA) was enhanced in the presence of D- or L-histidine. The rate constants of degradation of NpN were dissected into the rate constants of hydrolysis and interconversion between N(2)'pN and N(3)'pN using a computer program SIMFIT. Kinetic analysis supports the mechanism that imidazolium ion and imidazole catalyze interconversion and hydrolysis even under hydrothermal environments. The activation parameters for the hydrolysis and interconversion of NpN were systematically determined for the first time from the temperature dependence of the rate constants, where both DeltaH(app)( not equal ) and DeltaS(app)( not equal ) for 2',5'-linked NpN are larger than those for 3',5'-linked NpN. These parameters support the pseudorotation mechanism through pentacoordinate intermediate from 2',5'- and 3',5'-linked NpN, where the average value of DeltaH( not equal ) (pseudorotation) was estimated to be 30+/-18 kJ mol(-1) at 175-240 degrees C.  相似文献   
116.
Among polyamines (putrescine, spermidine, and spermine), spermine specifically induces cataract in an organ cultured lens. Spermine uptake nearly paralleled the cataract formation. When polyamines were added to lens soluble proteins, spermine specifically induced turbidity. When lens soluble proteins were separated by gel chromatography, heavy-molecular-weight protein (HMW, high molecular form of alpha-crystallin) and proteins between betaH- and betaL-crystallin fractions reacted with spermine and aggregated. SDS-polyacrylamide gel electrophoresis of the aggregated proteins showed that 43-kDa lens protein was commonly observed in both aggregates. Spermine-affinity chromatography of the total soluble proteins showed the binding of HMW protein to the gel and the chromatogram of the second turbidity peak in the gel chromatography showed the binding of 43-kDa protein. These results indicated that 43-kDa protein, which is present as a subunit in HMW and also in free form, binds spermine and induces turbidity of lens soluble proteins and produces cataract in a cultured lens.  相似文献   
117.
The amino acid sequence of membrane-associated prostaglandin (PG) E synthase-2 (mPGE synthase-2), which has a broad specificity in its thiol requirement for a catalytic activity, has the consensus region from 104Leu to 120Leu found in glutaredoxin and of thioredoxin. The sequence of Cys-x-x-Cys in the consensus region is the active site for thioredoxin and mPGE synthase-2 also has this amino acid sequence (110Cys-x-x-113Cys). The mutation from 110Cys to Ser or the double mutation from 110Cys and 113Cys to Ser caused loss of PGE synthase activity, whereas the single mutation from 113Cys to Ser did not affect the enzyme activity. These results indicate that 110Cys, but not 113Cys, is the essential amino acid in the active site of mPGE synthase-2. 110Cys is an important amino acid in PGE synthase activity and plays the critical role as Cys at the same position in redoxin. Moreover, we found that the reduced form of lipoic acid (dihydrolipoic acid) serves as one of the natural activators of mPGE synthase-2 in the cells.  相似文献   
118.
119.
We studied the mechanism of formation of oxygen radicals during ferrous ion-induced decomposition of linoleic acid hydroperoxide using the spin trapping and chemiluminescence methods. The formation of the superoxide anion (O2*-) was verified in the present study. The hydroxyl radical is also generated through Fenton type decomposition of hydrogen peroxide produced on disproportionation of O2*-. A carbon-centered radical was detected using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) as a spin trap. Alkoxyl radical formation is essential for the conversion of linoleic acid hydroperoxide into the peroxyl radical by ferrous ion. It is likely that the alkoxyl radical [R1CH(O*)R2] is converted into the hydroxylcarbon radical [R1C*(OH)R2] in water, and that this carbon radical reacts with oxygen to give the alpha-hydroxyperoxyl radical [R1R2C(OH)OO*], which decomposes into the carbocation [R1C+(OH)R2] and O2*-.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号