首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   12篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   11篇
  2012年   5篇
  2011年   12篇
  2010年   8篇
  2009年   14篇
  2008年   12篇
  2007年   12篇
  2006年   8篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   16篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
131.
The oxidation and deamination of 5-methylcytosine (5mC) in DNA generates a base-pair between 5-hydroxymethyluracil (5hmU) and guanine. 5hmU normally forms a base-pair with adenine. Therefore, the conversion of 5mC to 5hmU is a potential pathway for the generation of 5mC to T transitions. Mammalian cells have high levels of activity of 5hmU-DNA glycosylase, which excises 5hmU from DNA. However, glycosylases that similarly excise 5hmU have not been observed in yeast or Escherichia coli. Recently, we found that E.coli MutM, Nei and Nth have DNA glycosylase activity for 5-formyluracil, which is another type of oxidation product of the thymine methyl group. In this study, we examined whether or not E.coli MutM, Nei and Nth have also DNA glycosylase activity that acts on 5hmU in vitro. When incubated with synthetic duplex oligonucleotides containing 5hmU:G or 5hmU:A, purified MutM, Nei and Nth cleaved the 5hmU:G oligonucleotide 58, 5 and 37 times, respectively, more efficiently than the 5hmU:A oligonucleotide. In E.coli, the 5hmU-DNA glycosylase activities of MutM, Nei and Nth may play critical roles in the repair of 5hmU:G mispairs to avoid 5mC to T transitions.  相似文献   
132.
Thermophilic bacteria Bacillus subtilis WU-S2B and Mycobacterium phlei WU-F1 desulfurize dibenzothiophene (DBT) and alkylated DBTs through specific cleavage of the carbon-sulfur bonds over a temperature range up to 52°C. In order to identify and functionally analyze the DBT-desulfurization genes, the gene cluster containing bdsA, bdsB, and bdsC was cloned from B. subtilis WU-S2B. The nucleotide and amino acid sequences of bdsABC show homologies to those of the other known DBT-desulfurization genes and enzymes; e.g. a nucleotide sequence homology of 61.0% to dszABC of the mesophilic bacterium Rhodococcus sp. IGTS8 and 57.8% to tdsABC of the thermophilic bacterium Paenibacillus sp. A11-2. Deletion and subcloning analysis of bdsABC revealed that the gene products of bdsC, bdsA and bdsB oxidized DBT to DBT sulfone (DBTO2), converted DBTO2 to 2-hydroxybiphenyl-2-sulfinate (HBPSi), and desulfurized HBPSi to 2-hydroxybiphenyl (2-HBP), respectively. Resting cells of a recombinant Escherichia coli JM109 harboring bdsABC converted DBT to 2-HBP over a temperature range of 30–52°C, indicating that the gene products of bdsABC were functional in the recombinant. The activities of DBT degradation at 50°C and DBT desulfurization (2-HBP production) at 40°C in resting cells of the recombinant were approximately five times and twice, respectively, as high as those in B. subtilis WU-S2B. The recombinant E. coli cells also degraded alkylated DBTs, such as 2,8-dimethylDBT and 4,6-dimethylDBT. The nucleotide sequences of B. subtilis WU-S2B bdsABC and the corresponding genes from M. phlei WU-F1 were found to be completely identical to each other although the strains are genetically different.  相似文献   
133.
134.
135.
Vpr and selected mutants were used in a Saccharomyces cerevisiae two-hybrid screen to identify cellular interactors. We found Vpr interacted with 14-3-3 proteins, a family regulating a multitude of proteins in the cell. Vpr mutant R80A, which is inactive in cell cycle arrest, did not interact with 14-3-3. 14-3-3 proteins regulate the G(2)/M transition by inactivating Cdc25C phosphatase via binding to the phosphorylated serine residue at position 216 of Cdc25C. 14-3-3 overexpression in human cells synergized with Vpr in the arrest of cell cycle. Vpr did not arrest efficiently cells not expressing 14-3-3sigma. This indicated that a full complement of 14-3-3 proteins is necessary for optimal Vpr function on the cell cycle. Mutational analysis showed that the C-terminal portion of Vpr, known to harbor its cell cycle-arresting activity, bound directly to the C-terminal part of 14-3-3, outside of its phosphopeptide-binding pocket. Vpr expression shifted localization of the mutant Cdc25C S216A to the cytoplasm, indicating that Vpr promotes the association of 14-3-3 and Cdc25C, independently of the presence of serine 216. Immunoprecipitations of cell extracts indicated the presence of triple complexes (Vpr/14-3-3/Cdc25C). These results indicate that Vpr promotes cell cycle arrest at the G(2)/M phase by facilitating association of 14-3-3 and Cdc25C independently of the latter's phosphorylation status.  相似文献   
136.
Kino K  Sugiyama H 《Mutation research》2005,571(1-2):33-42
Many oxidizing agents induce G-C to T-A and G-C to C-G transversions, and the frequency largely depends on the oxidative conditions. Guanine is the most oxidizable base among natural bases. The typical oxidative lesion product 8-oxoguanine (8-oxoG) is responsible for G-C to T-A transversion but not for G-C to C-G transversion, and 8-oxoG is more readily oxidized than guanine because of its lowered ionization potential. Recently, imidazolone (Iz), guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) have been demonstrated as oxidative lesion products of guanine and 8-oxoG, which could be responsible for G-C to C-G transversions by forming specific base pair formations.  相似文献   
137.
Adenosine (ADO) exerts potent anti-inflammatory and immunosuppressive effects. In this paper we address the possibility that these effects are partly mediated by inhibition of the secretion of IL-12, a proinflammatory cytokine and a major inducer of Th1 responses. We demonstrate that 5'-N-ethylcarboxamidoadenosine (NECA), a nonspecific ADO analogue, and 2-p-(2-carbonyl-ethyl)phenylethylamino-5'-N-ethylcarboxamidoadenos ine (CGS-21680), a specific A2a receptor agonist, dose-dependently inhibited, in whole blood ex vivo and monocyte cultures, the production of human IL-12 induced by LPS and Stapholococcus aureus Cowan strain 1. However, the A1 receptor agonist 2-Chloro-N6-cyclopentyladenosine and the A3 receptor agonists N6-Benzyl-NECA and 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-be ta-d -ribofuranuronamide expressed only weak inhibitory effects. On the other hand, NECA and CGS-21680 dose-dependently potentiated the production of IL-10. The differential effect of these drugs on monocyte IL-12 and IL-10 production implies that these effects are mediated by A2a receptor signaling rather than by intracellular toxicity of ADO analogue's metabolites. Moreover, CGS-21680 inhibited IL-12 production independently of endogenous IL-10 induction, because anti-IL-10 Abs failed to prevent its effect. The selective A2a antagonist 8-(3-Chlorostyryl) caffeine prevented the inhibitory effect of CGS-21680 on IL-12 production. The phosphodiesterase inhibitor Ro 20-1724 dose-dependently potentiated the inhibitory effect of CGS-21680 and, furthermore, Rp-cAMPS, a protein kinase A inhibitor, reversed the inhibitory effect of CGS-21680, implicating a cAMP/protein kinase A pathway in its action. Thus, ligand activation of A2a receptors simultaneously inhibits IL-12 and stimulates IL-10 production by human monocytes. Through this mechanism, ADO released in excess during inflammatory and ischemic conditions, or tissue injury, may contribute to selective suppression of Th1 responses and cellular immunity.  相似文献   
138.
To investigate the possible correlation between genotype and phenotype of epilepsy, we analyzed the voltage-gated sodium channel alpha1-subunit (SCN1A) gene, beta1-subunit (SCN1B) gene, and gamma-aminobutyric acid(A) receptor gamma2-subunit (GABRG2) gene in DNAs from peripheral blood cells of 29 patients with severe myoclonic epilepsy in infancy (SME) and 11 patients with other types of epilepsy. Mutations of the SCN1A gene were detected in 24 of the 29 patients (82.7%) with SME, although none with other types of epilepsy. The mutations included deletion, insertion, missense, and nonsense mutations. We could not find any mutations of the SCN1B and GABRG2 genes in all patients. Our data suggested that the SCN1A mutations were significantly correlated with SME (p<.0001). As we could not find SCN1A mutations in their parents, one of critical causes of SME may be de novo mutation of the SCN1A gene occurred in the course of meiosis in the parents.  相似文献   
139.
We previously found dehydroxymethylepoxyquinomicin (DHMEQ) inhibited NF-kappaB activation and showed anti-inflammatory activity in vivo. Here we designed and synthesized analogues of DHMEQ and tested their biological activity as NF-kappaB inhibitors in human T cell leukemia Jurkat cells. The hydroxyl group at the 2-position of the benzamide moiety was found to be essential for the inhibitory activity. But etherification of this group did not diminish the activity completely. Thus, for further mechanistic studies the hydroxyl group at the 2-position may be useful for extension with a linker and biotin moiety.  相似文献   
140.
Human placental ferritin receptor   总被引:3,自引:0,他引:3  
Brush-border membranes from human placenta were prepared and their purity was clarified by biochemical and morphological methods. Ferritin binding to these prepared membranes was examined using horse spleen 125I-apoferritin, and was found to be completed within 10 min at 37 degrees C and pH 7.5. The amount of ferritin bound to the membranes was found to be proportional to the amount of membrane added and saturable for a given amount of the membrane in the presence of excess ligand. The membranes exhibited specific ferritin binding with a Ka of 2.3 X 10(7) M-1 at pH 7.5. A competitive binding assay indicated that horse spleen 125I-apoferritin binding was inhibited by a 10-fold molar excess of horse spleen ferric ferritin and a 500-fold molar excess of human transferrin. These results suggest that human placental brush-border membranes have specific receptors for horse spleen apoferritin molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号