首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   78篇
  976篇
  2022年   12篇
  2021年   3篇
  2020年   7篇
  2019年   11篇
  2018年   10篇
  2017年   7篇
  2016年   17篇
  2015年   24篇
  2014年   25篇
  2013年   49篇
  2012年   29篇
  2011年   54篇
  2010年   32篇
  2009年   41篇
  2008年   65篇
  2007年   56篇
  2006年   65篇
  2005年   64篇
  2004年   55篇
  2003年   63篇
  2002年   59篇
  2001年   18篇
  2000年   15篇
  1999年   20篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   13篇
  1994年   9篇
  1993年   5篇
  1992年   12篇
  1991年   18篇
  1990年   6篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1984年   2篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
排序方式: 共有976条查询结果,搜索用时 15 毫秒
931.
FTY720, a metabolite from Isaria sinclairii, has been developed to be a potent immunosuppressive drug with induction of apoptosis in T cells and several cell lines. We investigated whether FTY720 induces apoptosis in human glioma cell lines, since they are relatively resistant to multiple apoptotic stimuli. In human glioma cells including T98G, FTY720 induced apoptosiswith ED50 between 1 to 10 microg/ml, while etoposidedid not induce apoptosis at the same doses. Among the caspase family proteases, mainly caspase-6 was activated during the apoptosis by FTY720 but not etoposide. In addition, FTY720 caused tyrosine dephosphorylation of FAK and did not activate a FAK-PI3-kinase survival pathway. This was confirmed also by the observation that orthovanadate prevented FTY720-induced dephosphorylation of FAK and inhibited FTY720-induced cell death. We assumed that FTY720 induced FAK dephosphorylation and cut off the FAK-PI3-kinase pathway resulting in the induction of apoptosis via caspase-6 activation in these glioma cells.  相似文献   
932.
The protective effects of sarpogrelate (SG), a 5-HT2A antagonist, were investigated in perfused guinea-pig Langendorff hearts subjected to ischemia and reperfusion. Changes in cellular levels of high phosphorous energy, NO and Ca2+ in the heart together with simultaneous recordings of left ventricular developed pressure (LVDP) were monitored using an nitric oxide (NO) electrode, fluorometry and 31P-NMR. The recovery of LVDP from ischemia by reperfusion was 30.1% in the control, while the treatment with SG (5×10-7 M) in pre- and post-ischemia hearts produced a gradual increase to 73.1 and 53.6%, respectively. At the final stage of ischemia, the intracellular concentration of Ca2+ ([Ca2+i) and release of NO increased with no twitching and remained at a high steady level. The addition of SG increased the transient NO signal (TNO) level at the end of ischemia compared with the control, but [Ca2+]i during ischemia decreased. Meanwhile, mitochondrial Ca2+ uptake on acidification or Ca2+ content changes of the perfusate was suppressed by pre-treatment with SG or the KATP channel opener diazoxide, but not the KATP channel blocker 5-HD. The myocardial NO elevated with 5-HT in normal Langendorff hearts was suppressed by the treatment with SG. Therefore, the existence of the 5HT2A receptor in a Langendorff heart was anticipated. By in vitro EPR, SG was found to directly quench the hydroxy radical. Thus, these findings suggested that the 5-HT2A receptor induced in ischemia–reperfusion plays an important role in the mitochondrial KATP channel of hearts in close relation with NO and active oxygen radicals.  相似文献   
933.
Actin-related protein Arp4 functions in kinetochore assembly   总被引:2,自引:0,他引:2       下载免费PDF全文
The actin-related proteins (Arps) comprise a conserved protein family. Arp4p is found in large multisubunits of the INO80 and SWR1 chromatin remodeling complexes and in the NuA4 histone acetyltransferase complex. Here we show that arp4 (arp4S23A/D159A) temperature-sensitive cells are defective in G2/M phase function. arp4 mutants are sensitive to the microtubule depolymerizing agent benomyl and arrest at G2/M phase at restrictive temperature. Arp4p is associated with centromeric and telomeric regions throughout cell cycle. Ino80p, Esa1p and Swr1p, components of the INO80, NuA4 and SWR1 complexes, respectively, also associate with centromeres. The association of many kinetochore components including Cse4p, a component of the centromere nucleosome, Mtw1p and Ctf3p is partially impaired in arp4 cells, suggesting that the G2/M arrest of arp4 mutant cells is due to a defect in formation of the chromosomal segregation apparatus.  相似文献   
934.

Purpose

To determine by objective methods the minimum number of spectral-domain optical coherence tomographic (SD-OCT) images to average to obtain the clearest retinal image.

Methods

SD-OCT Images were obtained from 9 healthy eyes and also from a phantom eye model. The SD-OCT images were obtained by averaging 1, 5, 20, 60, and 100 B-scan images. The reflectivity (mean gray value) of the different retinal layers was evaluated in these images. The image quality was evaluated by the size of the standard deviations (SDs) and the contrast-to-noise ratios (CNRs). A phantom eye model made by TiO2 silicone plates was also examined.

Results

The SDs decreased significantly when the number of images averaged increased from 1 to 5 and also from 5 to 20 (P<0.05, post hoc Tukey''s honestly significant difference tests). The SD of the automatic real time averaging of 1 (ART = 1) and ART = 5 were significantly larger than the SD of ART = 100 (P<0.05). The SDs of all other averaged numbers were not significantly larger than that of ART = 100. The CNR increased with an increase in the number of images averaged, and there was a significant increase between ART = 1 to 5 and between ART = 5 to 20 (P<0.05). No significant differences in the CNR was observed between ART = 5, ART = 20 and ART = 60. Similar results were obtained with the phantom eye model.

Conclusions

Although the image quality of the SD-OCT images of the retina improved with an increase in the number of images averaged, it does not improve significantly by averaging more than 20 images.  相似文献   
935.
REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.  相似文献   
936.
Parp-1 and Parp-2 are activated by DNA breaks and have been implicated in the repair of DNA single-strand breaks (SSB). Their involvement in double-strand break (DSB) repair mediated by homologous recombination (HR) or nonhomologous end joining (NHEJ) remains unclear. We addressed this question using chicken DT40 cells, which have the advantage of carrying only a PARP-1 gene but not a PARP-2 gene. We found that PARP-1(-/-) DT40 mutants show reduced levels of HR and are sensitive to various DSB-inducing genotoxic agents. Surprisingly, this phenotype was strictly dependent on the presence of Ku, a DSB-binding factor that mediates NHEJ. PARP-1/KU70 double mutants were proficient in the execution of HR and displayed elevated resistance to DSB-inducing drugs. Moreover, we found deletion of Ligase IV, another NHEJ gene, suppressed the camptothecin of PARP-1(-/-) cells. Our results suggest a new critical function for Parp in minimizing the suppressive effects of Ku and the NHEJ pathway on HR.  相似文献   
937.
938.
Glyceric acid (GA), an unfamiliar biotechnological product, is currently produced as a small by-product of dihydroxyacetone production from glycerol by Gluconobacter oxydans. We developed a method for the efficient biotechnological production of GA as a target compound for new surplus glycerol applications in the biodiesel and oleochemical industries. We investigated the ability of 162 acetic acid bacterial strains to produce GA from glycerol and found that the patterns of productivity and enantiomeric GA compositions obtained from several strains differed significantly. The growth parameters of two different strain types, Gluconobacter frateurii NBRC103465 and Acetobacter tropicalis NBRC16470, were optimized using a jar fermentor. G. frateurii accumulated 136.5 g/liter of GA with a 72% d-GA enantiomeric excess (ee) in the culture broth, whereas A. tropicalis produced 101.8 g/liter of d-GA with a 99% ee. The 136.5 g/liter of glycerate in the culture broth was concentrated to 236.5 g/liter by desalting electrodialysis during the 140-min operating time, and then, from 50 ml of the concentrated solution, 9.35 g of GA calcium salt was obtained by crystallization. Gene disruption analysis using G. oxydans IFO12528 revealed that the membrane-bound alcohol dehydrogenase (mADH)-encoding gene (adhA) is required for GA production, and purified mADH from G. oxydans IFO12528 catalyzed the oxidation of glycerol. These results strongly suggest that mADH is involved in GA production by acetic acid bacteria. We propose that GA is potentially mass producible from glycerol feedstock by a biotechnological process.A shift from petroleum to bio-based feedstocks will be necessary for a sustainable industrial society and effective management of greenhouse gas emissions (2, 20). Biodiesel fuel (BDF) is produced from vegetable oils and animal fats and can replace the diesel in diesel engine motors. Although the European Union currently produces 82% of the BDF produced in the world (7), the use of BDF will probably continue to grow worldwide, because petroleum is a limited resource. Massive amounts of glycerol can be obtained as a by-product of BDF production (approximately 10% by weight) through transesterification with alcoholysis generally catalyzed by NaOH or KOH. As the use of this glycerol is an important component of the economics of the BDF industry, there is a worldwide demand for the efficient use of glycerol (24).Among the recent developments in the conversion of glycerol into valuable chemicals, epichlorohydrin (ECH) and 1,2-propanediol (propylene glycol) are now commercially synthesized from glycerol by chemical processes, and 1,3-propanediol (1,3-PDO) and dihydroxyacetone (DHA) are produced from glycerol by biotechnological processes (4, 5, 17, 18, 24, 25). ECH, propylene glycol, and 1,3-PDO are used mainly as intermediates for resins and polymers. However, an increase in the price of glycerol, such as that which occurred due to the collapse of the BDF market (its price increased nearly threefold in Germany by the end of 2007 [24]), can have a large negative effect on the production of such low-price commodity chemicals. Hence, research on the production of more value-added and functional chemicals from (raw) glycerol is important.Recently, we have focused on the production of a glycerol derivative, glyceric acid (GA), using a bioprocess (Fig. (Fig.1)1) (9, 10). GA from an extract of Cynara scolymus leaves has liver stimulant and cholesterolytic activity in dogs (11), and d-GA calcium salt accelerates ethanol and acetaldehyde oxidation in rats (8). GA-based esters also exhibit antitrypsin activity (12), and novel oligoesters based on GA derivatives may be useful for pharmaceutical purposes, such as drug delivery systems (23). These reports suggest that GA is a promising chemical, but it is very expensive as a reagent for investigational use.Open in a separate windowFIG. 1.Proposed pathway for the conversion of glycerol to GA (glyceric acid) by acetic acid bacteria. The bioconversion of glycerol to DHA (dihydroxyacetone) is also represented.Before we began our research, little was known about GA as a biotechnological product, except for one Japanese patent from 25 December 1987 (Daicel Chemical Industries, Japanese patent application 51069) and a report on its by-production during DHA production by Gluconobacter oxydans (3, 21). According to the patent, resting cells of Gluconobacter cerinus IFO3262 (later Gluconobacter frateurii NBRC3262) converted 100 g/liter of glycerol to 57 g/liter of d-GA in a fermentor over a 2-day incubation. Recently, we revealed that Acetobacter tropicalis NBRC16470 produced 22.7 g/liter of optically pure d-GA from 200 g/liter of glycerol in a fermentor over a 4-day incubation (9). However, because this method of GA production is far from practical, we are attempting to develop a GA manufacturing bioprocess based on strain, fermentation, and process development.In this study, we searched for a GA producer among 162 acetic acid bacterial strains and investigated the GA productivity and enantiomeric composition of 88 selected strains. We also investigated oxidative fermentation conditions in a 5-liter jar fermentor and applied electrodialysis (ED) to recover glycerate from culture broth. Furthermore, we clarified the gene and enzyme involved in GA production from glycerol for the first time.  相似文献   
939.
Mitogen-activated protein kinases (MAPKs) are integral to the mechanisms by which cells respond to physiological stimuli and a wide variety of environmental stresses. In Caenorhabditis elegans, the stress response is controlled by a c-Jun N-terminal kinase (JNK)-like MAPK signaling pathway, which is regulated by MLK-1 MAPK kinase kinase (MAPKKK), MEK-1 MAPKK, and KGB-1 JNK-like MAPK. In this study, we identify the max-2 gene encoding a C. elegans Ste20-related protein kinase as a component functioning upstream of the MLK-1-MEK-1-KGB-1 pathway. The max-2 loss-of-function mutation is defective in activation of KGB-1, resulting in hypersensitivity to heavy metals. Biochemical analysis reveals that MAX-2 activates MLK-1 through direct phosphorylation of a specific residue in the activation loop of the MLK-1 kinase domain. Our genetic data presented here also show that MIG-2 small GTPase functions upstream of MAX-2 in the KGB-1 pathway. These results suggest that MAX-2 and MIG-2 play a crucial role in mediating the heavy metal stress response regulated by the KGB-1 pathway.Mitogen-activated protein kinase (MAPK) signal transduction pathways are evolutionarily conserved in eukaryotic cells and transduce signals in response to a variety of extracellular stimuli. Each pathway is composed of three classes of protein kinases: MAPK, MAPK kinase (MAPKK), and MAPK kinase kinase (MAPKKK) (4, 14). MAPKKK phosphorylates and activates MAPKK, which in turn activates MAPK by dual phosphorylation of threonine and tyrosine residues within a Thr-Xxx-Tyr motif. Three subgroups of MAPKs have been identified: the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinases (4, 14). JNK and p38 MAPKs function as key mediators of stress and immune signaling in mammals. The MKK4 and MKK7 MAPKKs have been shown to activate JNK, and the MKK3 and MKK6 MAPKKs serve as the major activators of p38 MAPK (4, 14). The specific MAPKKs are themselves phosphorylated and activated by specific MAPKKKs.Recent studies of Caenorhabditis elegans have revealed a high degree of conservation of JNK MAPK signaling components between C. elegans and mammals. The C. elegans JNK pathway, composed of an MKK7-type MAPKK JKK-1 and a JNK-type MAPK JNK-1, regulates coordinated movement via type D GABAergic (GABA stands for γ-aminobutyric acid) motor neurons (10) and has a role in synaptic vesicle transport (3). C. elegans also possesses another JNK-like MAPK pathway, composed of MLK-1 MAPKKK, MEK-1 MAPKK, and KGB-1 MAPK, which is homologous to the mammalian MLK-MKK7-JNK MAPK signaling cassette. KGB-1 has a novel activation site, consisting of Ser-Xxx-Tyr rather than Thr-Xxx-Tyr (19, 21). The KGB-1 pathway regulates the stress response to heavy metals (19). We have previously identified the vhp-1 and shc-1 genes as components functioning in the KGB-1 pathway. The vhp-1 and shc-1 genes encode a MAPK phosphatase (MKP) highly homologous to mammalian MKP-7 and a homolog of the mammalian Shc adaptor, respectively (19, 20). VHP-1 plays an important role in the heavy metal stress response in C. elegans by negatively regulating the KGB-1 pathway through dephosphorylation of KGB-1. SHC-1 mediates activation of the KGB-1 pathway by linking MEK-1 MAPKK with MLK-1 MAPKKK. However, it remains unknown what components function upstream of the MLK-1-MEK-1-KGB-1 pathway.In mammalian cells, the kinase activity of MLK family members is controlled by several different mechanisms, such as dimer formation, autoinhibition mediated by the Src homology 3 (SH3) domain of the MLKs itself, interaction with small GTPases, and phosphorylation by MAPKKK kinase (MAP4K) (6). In this study, we identified MAX-2, a member of the Ste20 group of protein kinases, as a potential component functioning upstream of MLK-1 MAPKKK in the KGB-1 pathway. MAX-2 physically associates with and phosphorylates MLK-1 at a Ser residue in the activation loop located between kinase subdomains VII and VIII of MLK-1, resulting in its activation. Additionally, we found that MIG-2, a member of the Rac family of small GTPases, functions as an upstream regulator of MAX-2. Our results thus identify the in vivo machinery regulating the JNK-mediated stress response pathway via a Ste20-related kinase and Rac-type GTPase.  相似文献   
940.
BackgroundThe link of low estimated glomerular filtration rate (eGFR) and high proteinuria to cardiovascular disease (CVD) mortality is well known. However, its link to mortality due to other causes is less clear.MethodsWe studied 367,932 adults (20–93 years old) in the Korean Heart Study (baseline between 1996–2004 and follow-up until 2011) and assessed the associations of creatinine-based eGFR and dipstick proteinuria with mortality due to CVD (1,608 cases), cancer (4,035 cases), and other (non-CVD/non-cancer) causes (3,152 cases) after adjusting for potential confounders.ResultsAlthough cancer was overall the most common cause of mortality, in participants with chronic kidney disease (CKD), non-CVD/non-cancer mortality accounted for approximately half of cause of death (47.0%for eGFR <60 ml/min/1.73m2 and 54.3% for proteinuria ≥1+). Lower eGFR (<60 vs. ≥60 ml/min/1.73m2) was significantly associated with mortality due to CVD (adjusted hazard ratio 1.49 [95% CI, 1.24–1.78]) and non-CVD/non-cancer causes (1.78 [1.54–2.05]). The risk of cancer mortality only reached significance at eGFR <45 ml/min/1.73m2 when eGFR 45–59 ml/min/1.73m2 was set as a reference (1.62 [1.10–2.39]). High proteinuria (dipstick ≥1+ vs. negative/trace) was consistently associated with mortality due to CVD (1.93 [1.66–2.25]), cancer (1.49 [1.32–1.68]), and other causes (2.19 [1.96–2.45]). Examining finer mortality causes, low eGFR and high proteinuria were commonly associated with mortality due to coronary heart disease, any infectious disease, diabetes, and renal failure. In addition, proteinuria was also related to death from stroke, cancers of stomach, liver, pancreas, and lung, myeloma, pneumonia, and viral hepatitis.ConclusionLow eGFR was associated with CVD and non-CVD/non-cancer mortality, whereas higher proteinuria was consistently related to mortality due to CVD, cancer, and other causes. These findings suggest the need for multidisciplinary prevention and management strategies in individuals with CKD, particularly when proteinuria is present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号