首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   301篇
  免费   16篇
  317篇
  2021年   4篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   3篇
  2008年   14篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   10篇
  2003年   13篇
  2002年   19篇
  2001年   16篇
  2000年   15篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   9篇
  1991年   8篇
  1990年   15篇
  1989年   10篇
  1988年   11篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1979年   4篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1965年   3篇
  1957年   1篇
排序方式: 共有317条查询结果,搜索用时 0 毫秒
21.
Mitochondrial dysfunction in ischemic liver has been demonstrated to be due to decrease in the intramitochondrial level of ATP and the subsequent disruption of the proton barrier of the inner membrane (Watanabe, F., Hashimoto, T. and Tagawa, K. (1985) J. Biochem. 97, 1229-1234). In this study, another injury process, impairment of the electron-transfer system, which occurred during reoxygenation of ischemic liver, was studied during reperfusion of cold preserved liver and during cold incubation of isolated rat-liver mitochondria. The sites of the respiratory chain that were sensitive to peroxidative damage were ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase. These enzymic activities decreased with increase in lipid peroxidation. Incubation of submitochondrial particles with t-butyl hydroperoxide or with an NADPH-dependent peroxidation system decreased the enzymic activities of the electron-transport system. These data strongly suggested that lipid peroxidation during reoxygenation of ischemic liver impaired the electron-transfer system. Thus, mitochondria of ischemic liver suffer from two different types of injury: increase in proton permeability during anoxia, and decrease in enzymic activities of the electron-transport system during reoxygenation.  相似文献   
22.
As a group closely related to chordates, hemichordate acorn worms are in a key phylogenic position for addressing hypotheses of chordate origins. The stomochord of acorn worms is an anterior outgrowth of the pharynx endoderm into the proboscis. In 1886 Bateson proposed homology of this organ to the chordate notochord, crowning this animal group “hemichordates.” Although this proposal has been debated for over a century, the question still remains unresolved. Here we review recent progress related to this question. First, the developmental mode of the stomochord completely differs from that of the notochord. Second, comparison of expression profiles of genes including Brachyury, a key regulator of notochord formation in chordates, does not support the stomochord/notochord homology. Third, FoxE that is expressed in the stomochord‐forming region in acorn worm juveniles is expressed in the club‐shaped gland and in the endostyle of amphioxus, in the endostyle of ascidians, and in the thyroid gland of vertebrates. Based on these findings, together with the anterior endodermal location of the stomochord, we propose that the stomochord has evolutionary relatedness to chordate organs deriving from the anterior pharynx rather than to the notochord. genesis 52:925–934, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
23.
A sensitive and simple enzyme immunoassay for direct quantitation of serum dexamethasone was established. An antiserum with high specificity was produced by the immunization of rabbits with a newly synthesized 4-(carboxymethylthio)dexamethasone-bovine serum albumin conjugate. Alkaline phosphatase was used as a labeling enzyme. The minimum amount of dexamethasone detected was 2 pg per tube on the basis of B/Bo 100 - 2 SD (%) of standard curve. However, taking into account the cross-reaction with steroids such as cortisol in dexamethasone-free serum, the measurable range was from approximately 0.13 to 10 micrograms/dl. Intra- and interassay coefficients of variation were 1.5 - 5.4% and 0.6 - 6.5%, respectively. Serum levels of dexamethasone and cortisol in four normal subjects after an oral administration of 1 mg of dexamethasone are also reported.  相似文献   
24.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   
25.
The developmental interactions between the gregarious endoparasitoidApanteles ruficrus Hal. and the army worm,Leucania separata Walker were investigated. The parasitoid preferred young host larvae and developed in 9.5 days irrespective of host age at the time of parasitization. The growth of parasitized host larvae were depressed. The net maximum weight of the host larva was positively correlated with the number of parasitoid eggs laid when the 2nd instar was parasitized. And when parasitizing in 2nd instar, the weight of parasitoid was negatively correlated with the number of eggs laid. The parasitoid has an ability to regulate the size of the host and the parasitoid itself according to the number of eggs laid when the host larva is very small.  相似文献   
26.
Hanaoka  Ken'ichi  Tagawa  Shoji  Kaise  Toshikazu 《Hydrobiologia》1992,235(1):623-628
Two growth media containing arsenobetaine [(CH3)3 As+ CH2COO] were mixed with coastal marine sediments, the latter providing a source of microorganisms. The mixtures were kept at 25 °C in the dark and shaken for several weeks under an atmosphere of air. The disappearance of arsenobetaine and the appearance of two metabolites were followed by HPLC. The HPLC-retention time of the first metabolite agreed with that of trimethylarsine oxide [(CH3)3AsO]. The second metabolite was identified as arsenate (As(V)) using hydride generation/cold trap/GC MS analysis and thin layer chromatography. This is the first scientific evidence showing that arsenobetaine is degraded by microorganisms to inorganic arsenic via trimethylarsine oxide. The degradation of arsenobetaine to inorganic arsenic completes the marine arsenic cycle that begins with the methylation of inorganic arsenic on the way to arsenobetaine.  相似文献   
27.
28.
29.
Electron transfer within rat neuronal nitric-oxide synthase (nNOS) was investigated by pulse radiolysis. Radiolytically generated 1-methyl-3-carbamoyl pyridinium (MCP) radical was found to react predominantly with the heme of the enzyme with a second-order rate constant for heme reduction of 3 x 10(8) m(-1) s(-1). In the calmodulin (CaM)-bound enzyme a subsequent first-order phase was observed which had a rate constant of 1.2 x 10(3) s(-1). In the absence of CaM, this phase was absent. Kinetic difference spectra for nNOS reduction indicated that the second phase consisted of heme reoxidation accompanied by formation of a neutral flavin semiquinone, suggesting that it is heme to flavin electron transfer. Experiments with the heme proximal surface mutant, K423E, had no second phase, confirming that the mutation blocks interdomain electron transfer. With the autoinhibitory loop deletion mutant, Delta40, the slow phase was observed even in the absence of CaM consistent with the role of the loop in impeding interdomain electron transfer. The rate of heme to FMN electron transfer observed in the wild-type enzyme is approximately 1000 times faster than the FMN to heme electron transfer rate predicted during catalysis from kinetic modeling, suggesting that the catalytic process is slowed by kinetic gating.  相似文献   
30.
Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. We found previously that treatment of oxidized cytochrome b(561) with diethyl pyrocarbonate caused specific N-carbethoxylation of three fully conserved residues (His88, His161, and Lys85) located at the extravesicular side. The modification lead to a selective loss of the electron-accepting ability from ascorbate without affecting the electron donation to monodehydroascorbate radical [Tsubaki, M., Kobayashi, K., Ichise, T., Takeuchi, F., and Tagawa, S. (2000) Biochemistry 39, 3276-3284]. In the present study, we found that these modifications lead to a drastic decrease of the midpoint potential of heme b at the extravesicular side from +60 to -30 mV. We found further that the O-carbethoxylation of one tyrosyl residue (Tyr218) located at the extravesicular side was significantly enhanced under alkaline conditions, leading to a very slow reduction process of the oxidized heme b with ascorbate. On the other hand, the presence of ascorbate during the treatment with diethyl pyrocarbonate was found to suppress the carbethoxylation of His88, His161, and Tyr218, whereas the modification level of Lys85 was not affected. Concomitantly, the final reduction level of heme b with ascorbate was protected, although the fast reduction phase was not fully restored. These results suggest that the two heme-coordinating histidyl residues (His88 and His161) are also a part of the ascorbate binding site. Tyr218 and Lys85 may have a role in the recognition/binding process for ascorbate and are indispensable for the fast electron transfer reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号