首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   154篇
  国内免费   3篇
  2022年   7篇
  2020年   6篇
  2018年   11篇
  2017年   11篇
  2016年   10篇
  2015年   33篇
  2014年   24篇
  2013年   43篇
  2012年   58篇
  2011年   55篇
  2010年   33篇
  2009年   28篇
  2008年   33篇
  2007年   29篇
  2006年   27篇
  2005年   27篇
  2004年   27篇
  2003年   25篇
  2002年   22篇
  2001年   25篇
  2000年   26篇
  1999年   24篇
  1998年   12篇
  1997年   9篇
  1996年   8篇
  1995年   15篇
  1994年   13篇
  1993年   11篇
  1992年   29篇
  1991年   19篇
  1990年   21篇
  1989年   19篇
  1988年   16篇
  1987年   14篇
  1986年   14篇
  1985年   18篇
  1984年   12篇
  1983年   8篇
  1982年   8篇
  1981年   15篇
  1980年   7篇
  1979年   9篇
  1978年   15篇
  1977年   11篇
  1976年   15篇
  1975年   8篇
  1974年   9篇
  1973年   5篇
  1972年   6篇
  1971年   7篇
排序方式: 共有966条查询结果,搜索用时 15 毫秒
71.

Background

The aim of the present study was to identify the long-term major adverse cardiovascular events (MACE) in treated periodontitis patients in Taiwan.

Methods

From the National Health Insurance Research Database (2001-2010), adult patients (≥ 18 years) with treated periodontitis were identified. Comparison was made between patients with mild form and severe form of treated periodontitis after propensity score matching. The primary end point was the incidence of MACE.

Results

A total of 32,504 adult patients with treated periodontitis were identified between 2001 and 2010. After propensity score matching, 27,146 patients were preserved for comparison, including 13,573 patients with mild form and 13,573 patients with severe form of treated periodontitis. During follow-up, 728 individuals in mild treated periodontitis group and 1,206 individuals in severe treated periodontitis group had at least 1 MACE event. After adjustment for gender, hyperlipidemia, hypertension and diabetes mellitus, severe treated periodontitis was associated with a mildly but significantly increased risk of MACE among older patients > 60 years of age (incidence rate ratio, 1.26; 95% confidence interval, 1.08–1.46). No association was found among younger patients ≤ 60 years of age.

Conclusions

Severe form of treated periodontitis was associated with an increased risk of MACE among older Taiwanese patients, but not among younger Taiwanese patients. We should put more efforts on the improvement of periodontal health to prevent further MACE.  相似文献   
72.
Summary: Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable “core genome” and a highly variable “accessory genome.” Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.  相似文献   
73.
74.
Osteoporosis is a common, complex disease that is influenced by genetic and environmental factors. Although molecular genetic studies have identified several potential regions of linkage, underlying susceptibility gene(s) are largely unknown. Genetic susceptibility to osteoporosis may be both context dependent and developmentally regulated, and epigenetic mechanisms are the likely link between gene and environment. In this paper we will review the status of genetic research into osteoporosis, and present the evidence for gene-environment interaction in its pathogenesis. Finally, the current challenges and future directions of research will be briefly discussed.  相似文献   
75.
We report the preparation of a non-polymer coated superparamagnetic nanoparticle that is stable and biocompatible both in vitro and in vivo. The non-polymer, betaine, is a natural methylating agent in mammalian liver with active surface property. Upon systemic administration, the nanoparticle has preferential biodistribution in mammalian liver and exhibits good reduction of relaxivity time and negative enhancement for the detection of hepatoma nodules in rats using MRI. Our data demonstrate that the non-polymer coated superparamagnetic nanoparticle should have potential applications in biomedicine.  相似文献   
76.
77.
78.
79.
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.  相似文献   
80.
Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14+TLR4, whereas cancerous tissues were CD14+TLR4+, by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14+TLR4+ colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14+TLR4) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.Colorectal tumorigenesis proceeds via the accumulation of genetic and epigenetic alterations that promote unlimited cell proliferation, self-sufficient growth signaling, neovascularization, tissue invasion, and resistance to cell death.1 The transformation of normal epithelium into colorectal carcinomas (CRC) is associated with the progressive inhibition of apoptosis; this confers a selective advantage for tumor cell survival and chemoresistance.2, 3 It is generally believed that sufficient epithelial apoptosis may hamper colon cancer formation in terms of incidence and growth rate.4, 5, 6 Direct evidence for this was recently reported in mice deficient in pro-apoptotic molecules.7, 8 To date, the regulatory mechanisms of physiological apoptosis to eliminate premalignant cells in the gut remain incompletely understood.Intestinal homeostasis is maintained by the dynamic, yet strictly regulated, turnover of epithelial cells. An imbalance in epithelial death versus survival/proliferative responses may lead to barrier dysfunction, chronic inflammation, and tumorigenesis.9, 10 Accumulating evidence indicates that gut microbiota and bacterial lipopolysaccharide (LPS) have critical roles in epithelial cell renewal under baseline conditions and on injury,11, 12 and are involved in the pathogenesis of colitis-associated CRC as well.13, 14, 15 Given the juxtaposition of commensal bacteria and the gut mucosa, it has been assumed that normal epithelial cells are not equipped with LPS receptor complexes (CD14/TLR4/MD2) or express altered forms of receptors and signaling molecules to achieve immunotolerance.15 Constitutive expression of CD14 was reported in the presence of negligible-to-low levels of Toll-like receptor 4 (TLR4) in normal human colonocytes,16, 17, 18 whereas strong TLR4 immunoreactivity was detected in CRC.18, 19 Nevertheless, divergent cellular responses to LPS (death versus survival) have been reported among human CRC cell lines. Several laboratories, using Caco-2 cells, have described increases in apoptotic cell death following apical LPS challenge,20, 21 whereas others have documented enhanced survival and proliferative responses of HT29 and SW480 cells to LPS.22, 23 Here we hypothesize that differing expression patterns of LPS receptor subunits on epithelial surfaces may have a determining role in cell death versus survival.CD14, as the membrane-bound subunit of LPS receptor complex and lacking a cytoplasmic tail, has traditionally been regarded as merely a binding component for transferring LPS to TLR4. TLR4 subsequently activates downstream adaptors and signaling pathways, such as myeloid differentiation factor (MyD88), mitogen-activated protein kinases (MAPKs), inhibitor of κB (IκB)/nuclear factor-κB (NFκB), and interferon regulatory factor 3 (IRF3).24, 25 Recent findings in monocytes have indicated that LPS/CD14 binding triggers a cascade of lipid messenger signals before TLR4 trafficking to lipid rafts for complex formation. CD14-dependent lipid signaling includes the conversion of membranous phosphatidylcholine (PC) to diacylglcerol by PC-specific phospholipase C (PC-PLC) and the activation of sphingomyelinase (SMase) for sphingolipid metabolism and ceramide production. This process leads to the phosphorylation of protein kinase C (PKC) ζ, which recruits TLR4 to interact with CD14 (Cuschieri et al.26 and Triantafilou et al.27). Lipid messengers, such as sphingolipids and ceramides, and their downstream PKCζ signals have been implicated in pro-apoptotic pathways and are considered tumor suppressors.28, 29, 30 Decreased SMase activity and PKCζ levels have been observed in human colorectal tumors, correlated with poor prognosis.31, 32 In contrast, the TLR4/MyD88 and IκB/NFκB pathways are associated with anti-apoptotic and hyperproliferative responses.5, 33, 34, 35 Reduced colorectal tumor formation has been documented in TLR4(−/−), MyD88(−/−), and epithelial-specific IκB kinase β-deficient mice as compared with wild-type (WT) mice.5, 19, 36 These findings led us to speculate that the expression of CD14 and TLR4 on epithelial cell surfaces may provide antagonistic signals to counteract apoptotic responses to LPS and to influence tumor progression.The aims of this study were to (1) investigate the expression patterns of LPS receptor subunits in normal and cancerous colonic epithelia in human and murine tissues; (2) examine the individual roles of CD14 and TLR4 in epithelial apoptosis and tumor formation using a mouse model of colitis-associated CRC; (3) assess the involvement of CD14-mediated lipid messengers and/or TLR4-dependent signaling in the mechanism of LPS-induced apoptosis using human carcinoma cell lines; and (4) evaluate whether TLR4 has an opposing role against CD14-mediated apoptosis to promote tumor cell survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号