首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  39篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
25.
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use ‘cascade’ [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5–Cas7–crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.  相似文献   
26.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.  相似文献   
27.

Salinity stress is one of the most significant global issues that negatively affect plant growth and development. Modern agricultural practices have expanded the destructive effects of salinity stress, affecting plants through immediate osmotic stress, followed by a slow onset of ionic or hyper-osmotic stress. Plants alteration and resistance to salinity stress involve complex physiological, biochemical, and molecular systems to maintain homeostasis. As of late, the investigation of gaseous molecules in plants has attained much consideration, particularly for abiotic stress. Abiotic stresses generally initiate gasotransmitter (GT) generation in plants. In the interim, these GTs enhance the accumulation and activities of few antioxidant molecules, check the destructiveness of reactive oxygen species (ROS), and improve plant resilience under different stress conditions. The current review presented the role of gaseous molecules in plants under salinity stress, which include nitric oxide (·NO), hydrogen sulfide (H2S), hydrogen gas (H2), carbon monoxide (CO), methane (CH4), and the only gaseous phytohormone ethylene. Further, we highlighted the underlying molecular mechanisms of the gasotransmitter signaling and cross-talks in salinity stress. Also, we presented a general update on the inclusion of GT in salt stress response, including the research gaps and its applications in the advancement of salinity-resistant plants.

  相似文献   
28.
Modulation of the immune responses using active bio-ingredients as a possible prophylaxis measure has been novel prospect for aquaculture. The present study evaluated the effects of azadirachtin EC 25% on non-specific immune responses in goldfish Carassius auratus and resistance against pathogenic bacteria Aeromonas hydrophila. The experimental trial for effects of azadirachtin on immuno-haematoloical parameters in goldfish was conducted by feeding the various levels of azadirachtin as control T0 (without azadirachtin), T1 (0.1%), T2 (0.2%), T3 (0.4%), T4 (0.8%) and T5 (1.6%) for a period of 28 days. Fishes were challenged with A. hydrophila 28 days post feeding and relative percentage survival (%) was recorded over 14 days post infection. Immuno-haematoloical (total erythrocyte count, total leukocyte count, haemoglobin, packed cell volume, NBT activity, phagocytic activity, serum lysozyme activity, myeloperoxidase activity, total immunoglobulin) and serum biochemical parameters (serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) and blood glucose) of fishes were examined at 14 and 28 days of feedings. Fish fed with azadirachtin, showed significantly (p < 0.05) enhanced TEC, TLC, Total Ig, total protein, NBT activity, serum lysozyme activity and myeloperoxidase level in different treatment groups in comparison with control group. Similarly, SGOT, SGPT and blood glucose level were found to be significantly (p < 0.05) high but PCV and Hb did not differ significantly (p > 0.05) in the treatment groups compared to control groups. Azadirachtin at the concentration of 4 g kg?1 showed significantly (p < 0.05) higher relative percentage survival (42.60%) when compared with the control against A. hydrophila infection. This study indicated that azadirachtin EC 25% (4 g kg?1) showed higher NBT activity, serum lysozyme, protein profiles, leukocyte counts and resistance against A. hydrophila infection and thus, can be used as a potential immunostimulant in aquaculture.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号