首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   10篇
  313篇
  2023年   6篇
  2022年   4篇
  2021年   18篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   10篇
  2015年   17篇
  2014年   18篇
  2013年   22篇
  2012年   22篇
  2011年   29篇
  2010年   20篇
  2009年   10篇
  2008年   18篇
  2007年   16篇
  2006年   20篇
  2005年   22篇
  2004年   11篇
  2003年   10篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
151.
Tuz Lake is a hypersaline lake located in Central Anatolia, Turkey. The lake and its salterns, Kaldirim and Kayacik, are the major sources of solar salt for industrial applications in Turkey, especially in the food and leather industries. Use of the crude solar salt often results in microbial deterioration of the products. We therefore initiated a thorough characterization of the microbial communities in Tuz Lake and its adjacent salterns, and we present here the results of investigations on diversity of extremely halophilic Archaea. Twenty-seven colonies of aerobic red or pink Archaea (family Halobacteriaceae) were selected according to colony shape, size, consistency and pigmentation, and characterized according to their phenotypic characteristics, polar lipid contents, and antibiotic sensitivities. Furthermore, 16S rRNA genes of the isolates were screened by DGGE analysis and partially sequenced. Phylogenetic analysis showed that most isolates belonged to the genera Haloarcula, Halorubrum and Halobacterium. Haloarcula was found to be dominant both in Tuz Lake and in the saltern samples. Halorubrum species were isolated from Tuz Lake and from the Kaldirim saltern, and Halobacterium species were recovered from Tuz Lake and from the Kayacik saltern. All strains showed various activities of hydrolytic enzymes (proteases, amylases, cellulases, and others), activities which are responsible for the detrimental effects of the crude salt in food and leather products.  相似文献   
152.
The aim of this study is to determine the relation between diabetes and vaginal candidiasis in terms of oxidative biomarker levels in a vaginal candidiasis model of the diabetic rats by evaluating malondialdehyde (MDA), sulphydrile groups or glutathione (RSH), and ascorbic acid (C vit) levels. All rats were randomly divided into five groups. All of the groups were observed for 21 days. In the treated diabetes groups, MDA (0.90, 0.68 nmol/ml and 3.78, 3.79 nmol/g tissue, plasma and vaginal tissue, respectively) and RSH (227, 171 nmol/100 ml 0.38, 0.37 μmol/g tissue, plasma and vaginal tissue, respectively) levels were found to be decreased while the levels of C vit were found to be increased (0.49, 0.37 μmol/l 2.39, 2.01 nmol/g tissue plasma, and vaginal tissue, respectively) (P < 0.05). In the groups of untreated diabetes, vaginal candidiasis were found to be more serious and oxidative biomarkers were found to be increased (MDA 1.30, 1.26 nmol/ml and 7.82, 2.37 nmol/g tissue and RSH 258, 145 nmol/100 ml and 0.31, 0.46 μmol/g tissue) while the antioxidant C vit levels were found to be decreased (0.24, 0.17 μmol/l 1.33, 2.66 nmol/g tissue) (P < 0.05). RSH, plasma MDA, blood glucose, and tissue MDA levels of vaginal candidiasis embedeled diabetic rats, were found to be higher than those in untreated diabetic and untreated vaginitis enbedeled rats ‹P < 0.05’. Vaginal candidiasis caused oxidative stress in diabetic rats working together. Systemic oxidative stress biomarkers were found to be affected from vaginal candidiasis although it was a local mucosal infection. This study was presented as a poster in the conference of ‹2nd Trends in Medical Mycology, 23–26 October 2005, Berlin, Germany’.  相似文献   
153.

Background

Allergic asthma is associated with chronic airway inflammation and progressive airway remodelling. However, the dynamics of the development of these features and their spontaneous and pharmacological reversibility are still poorly understood. We have therefore investigated the dynamics of airway remodelling and repair in an experimental asthma model and studied how pharmacological intervention affects these processes.

Methods

Using BALB/c mice, the kinetics of chronic asthma progression and resolution were characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway inflammation and remodelling was assessed by the analysis of bronchoalveolar and peribronichal inflammatory cell infiltrate, goblet cell hyperplasia, collagen deposition and smooth muscle thickening.

Results

Chronic allergen exposure resulted in early (goblet cell hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia and collagen deposition were resolved, full resolution of lymphocyte inflammation and smooth muscle thickening was only observed after eight weeks. ICS therapy when started before the full establishment of chronic asthma reduced the development of lung inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect smooth muscle thickening. These effects of ICS on airway remodelling were maintained for a further four weeks even when therapy was discontinued.

Conclusions

Utilising a chronic model of experimental asthma we have shown that repeated allergen exposure induces reversible airway remodelling and inflammation in mice. Therapeutic intervention with ICS was partially effective in inhibiting the transition from acute to chronic asthma by reducing airway inflammation and remodelling but was ineffective in preventing smooth muscle hypertrophy.  相似文献   
154.
Sustainable, ecological, and biocompatible materials are emerging for the development of novel components for tissue engineering. Microalgae being one of the unique organisms on Earth to provide various novel compounds with certain bioactivities are also a good source for the development of novel tissue scaffold materials. In this study, electrospinning technique was utilized to fabricate nanofibers from polycaprolactone loaded with microalgal extracts obtained from Haematococcus pluvialis (vegetative and carotenoid producing form) and Chlorella vulgaris. The FTIR results showed that, blending microalgae with polycaprolactone give unique bands rooted from microalgae and polycaprolactone structure. The samples were not diversified from each other, however stable bands were observed. SEM analysis revealed a uniform fiber fabrication with an average diameter of 810 ± 55 nm independent from microalgal extracts. MTT assay was done on HUVEC cell lines and results showed that nanofiber mats helped cell proliferation with extended time. Biodegradation resulted with mineral accumulation on the surface of same samples however the fiber degradation was uniform. With slow but stable biodegradation characteristics, microalgal extract loaded nanofiber mats holds great potential to be novel tissue scaffold material.  相似文献   
155.
Hippocampal slices offer an excellent experimental system for the study of activity-induced changes in the postsynaptic density (PSD). While studies have documented electrophysiological and structural changes at synapses in response to precise manipulations of hippocampal slices, parallel biochemical and proteomic analyses were hampered by the lack of subcellular fractionation techniques applicable to starting tissue about three orders of magnitude smaller than that used in conventional protocols. Here, we describe a simple and convenient method for the preparation of PSD fractions from hippocampal slices and the identification of its components by proteomic techniques. The "micro PSD fraction" obtained following two consecutive extractions of a synaptosomal fraction with Triton X-100 shows a significant enrichment in the marker protein PSD-95. Thin section electron microscopy shows PSDs similar to those observed in situ. However, other particulate material, especially myelin, and membrane vesicles are also present. The composition of the PSD fraction from hippocampal slices was analyzed by 2D LC/MS/MS. The proteomic approach which utilizes as little as 10microg total protein allowed the identification of >100 proteins. Many of the proteins detected in the fraction are the same as those identified in conventional PSD preparations including specialized PSD-scaffolding proteins, signaling molecules, cytoskeletal elements as well as certain contaminants. The results show the feasibility of the preparation of a PSD fraction from hippocampal slices of reasonable purity and of sufficient yield for proteomic analyses. In addition, we show that further purification of PSDs is possible using magnetic beads coated with a PSD-95 antibody.  相似文献   
156.
Chondroitin synthesis was performed using the recombinant Escherichia coli(C2987) strain created by transforming the plasmid pETM6-PACF-vgb, which carries the genes responsible for chondroitin synthesis, kfoA, kfoC, kfoF, and the Vitreoscilla hemoglobin gene (vgb). Then, Microbial chondroitin sulfate (MCS)’s antioxidant, anticholinesterase, and antibacterial activity were compared with commercial chondroitin sulfate (CCS). The antioxidant studies revealed that the MCS and CCS samples could be potential targets for scavenging radicals and cupric ion reduction. MCS demonstrated better antioxidant properties in the ABTS assay with the IC50 value of 0.66 mg than CCS. MCS showed 2.5-fold for DPPH and almost 5-fold for ABTS⋅+ (with a value of 3.85 mg/mL) better activity than the CCS. However, the compounds were not active for cholinesterase enzyme inhibitions. In the antibacterial assay, the Minimum inhibitory concentration (MIC) values of MCS against S. aureus, E. aerogenes, E. coli, P. aeruginosa, and K. pneumoniae (0.12, 0.18, 0.12, 0.18, and 0.18 g/mL, respectively) were found to be greater than that of CCS (0.42, 0.48, 0.36, 0.36, and 0.36 g/mL, respectively). This study demonstrates that MCS is a potent pharmacological agent due to its physicochemical properties, and its usability as a therapeutic-preventive agent will shed light on future studies.  相似文献   
157.
Little is known about the protective effects of carvacrol on the symptoms of streptozotocin induced diabetes in rats. Hence, this present study was designed to evaluate the protective effect of the strong antioxidant, carvacrol, on the symptoms of streptozotocin induced diabetes in rats. Carvacrol at the doses of 25 and 50 mg/kg body weight were orally administered to diabetic rats for a period of 7 days after the onset of diabetes. Food-water intake and body weight changes were daily recorded. Biochemical parameters such as serum glucose, insulin, total cholesterol, alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were measured. Although treatment of diabetic rats with oral administration of carvacrol resulted in a slight reduction in serum glucose level and significant reduction in serum total cholesterol, alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase in comparison with diabetic control rats, there were no significant differences in serum insulin levels, food-water intake values and body weight changes. Despite the inadequacy of carvacrol on diabetes treatments, it was determined to have at least a partially protective role on liver enzymes.  相似文献   
158.
Cellulose nanofibers were extracted from the agricultural residues, wheat straw and soy hulls, by a chemi-mechanical technique to examine their potential for use as reinforcement fibers in biocomposite applications. The structure of the cellulose nanofibers was investigated by transmission electron microscopy. The wheat straw nanofibers were determined to have diameters in the range of 10-80 nm and lengths of a few thousand nanometers. By comparison, the soy hull nanofibers had diameter 20-120 nm and shorter lengths than the wheat straw nanofibers. Chemical characterization of the wheat straw nanofibers confirmed that the cellulose content was increased from 43% to 84% by an applied alkali and acid treatment. FT-IR spectroscopic analysis of both fibers demonstrated that this chemical treatment also led to partial removal of hemicelluloses and lignin from the structure of the fibers. PXRD results revealed that this resulted in improved crystallinity of the fibers. After mechanical treatments of cryocrushing, disintegration and defibrillation, the thermal properties of the nanofibers were studied by the TGA technique and found to increase dramatically. The degradation temperature of both nanofiber types reached beyond 290 degrees C. This value is reasonably promising for the use of these nanofibers in reinforced-polymer manufacturing.  相似文献   
159.
Metals have been studied as potential chemotherapeutic agents for cancer therapies due to their high reactivity toward a wide variety of substances. The characterization of metal ion-binding capacities is essential to understand the possible effects of metals on target biomolecules. In the present study, biochemical effects of Au(III) and Ga(III) ions on calf thymus DNA (ctDNA) were studied comparatively via bioanalytical, spectroscopic, and thermal methods. Briefly, UV-Vis absorbance spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy were utilized for spectroscopic characterization, and isothermal titration calorimetry (ITC) measurements were performed for thermal analysis. Our results reveal that both Au(III) and Ga(III) ions are capable of interacting with ctDNA, and Au(III) ions display a more favorable interaction and a higher binding affinity. ITC analyses indicate that the Au(III)-DNA interaction displays a binding affinity (Ka) around 1.43?×?106 M?1, while a Ka around 1.17?×?105 M?1 was observed for the Ga(III)-DNA binding. It was suggested that both metal ions are unlikely to change the structural B-conformation while interacting with ctDNA.  相似文献   
160.
To date there are no clear criteria to determine whether a microbe is susceptible to biocides or not. As a starting point for distinguishing between wild-type and resistant organisms, we set out to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) distributions for four common biocides; triclosan, benzalkonium chloride, chlorhexidine and sodium hypochlorite for 3319 clinical isolates, with a particular focus on Staphylococcus aureus (N = 1635) and Salmonella spp. (N = 901) but also including Escherichia coli (N = 368), Candida albicans (N = 200), Klebsiella pneumoniae (N = 60), Enterobacter spp. (N = 54), Enterococcus faecium (N = 53), and Enterococcus faecalis (N = 56). From these data epidemiological cut-off values (ECOFFs) are proposed. As would be expected, MBCs were higher than MICs for all biocides. In most cases both values followed a normal distribution. Bimodal distributions, indicating the existence of biocide resistant subpopulations were observed for Enterobacter chlorhexidine susceptibility (both MICs and MBCs) and the susceptibility to triclosan of Enterobacter (MBC), E. coli (MBC and MIC) and S. aureus (MBC and MIC). There is a concern on the potential selection of antibiotic resistance by biocides. Our results indicate however that resistance to biocides and, hence any potential association with antibiotic resistance, is uncommon in natural populations of clinically relevant microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号