首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   10篇
  248篇
  2021年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   12篇
  2014年   10篇
  2013年   5篇
  2012年   11篇
  2011年   12篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   20篇
  2006年   15篇
  2005年   12篇
  2004年   9篇
  2003年   16篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1965年   2篇
  1964年   1篇
  1961年   2篇
  1960年   1篇
  1955年   1篇
  1953年   1篇
  1952年   2篇
排序方式: 共有248条查询结果,搜索用时 11 毫秒
61.

Background  

Salmonella is a highly successful parasite of reptiles, birds and mammals. Its ability to infect and colonise such a broad range of hosts coincided with the introduction of new genetic determinants, among them 5 major pathogeniCity islands (SPI1-5), into the Salmonella genome. However, only limited information is available on how each of these pathogeniCity islands influences the ability of Salmonella to infect chickens. In this study, we therefore constructed Salmonella Enteritidis mutants with each SPI deleted separately, with single individual SPIs (i.e. with the remaining four deleted) and a mutant with all 5 SPIs deleted, and assessed their virulence in one-day-old chickens, together with the innate immune response of this host.  相似文献   
62.
Stomata regulate gas exchange and their closure in response to pathogens may, in some cases, contribute to resistance. However, in the cereal mildew and rust systems, stomatal closure follows establishment of compatible infections. In incompatible systems, expression of major (R) gene controlled hypersensitive responses (HR), causes drastic, permanent stomatal dysfunction: stomata become locked open following powdery mildew attack and locked shut following rust attack. Thus, stomatal locking can be a hitherto unsuspected negative consequence of R gene resistance that carries a physiological cost affecting plant performance.Key Words: stomata, rust, mildew, hypersensitive response, stomatal lock-up  相似文献   
63.
64.
A major problem in mathematical modeling of the dynamics of complex biological systems is the frequent lack of knowledge of kinetic parameters. Here, we apply Brownian dynamics simulations, based on protein three-dimensional structures, to estimate a previously undetermined kinetic parameter, which is then used in biochemical network simulations. The peroxidase-oxidase reaction involves many elementary steps and displays oscillatory dynamics important for immune response. Brownian dynamics simulations were performed for three different peroxidases to estimate the rate constant for one of the elementary steps crucial for oscillations in the peroxidase-oxidase reaction, the association of superoxide with peroxidase. Computed second-order rate constants agree well with available experimental data and permit prediction of rate constants at physiological conditions. The simulations show that electrostatic interactions depress the rate of superoxide association with myeloperoxidase, bringing it into the range necessary for oscillatory behavior in activated neutrophils. Such negative electrostatic steering of enzyme-substrate association presents a novel control mechanism and lies in sharp contrast to the electrostatically-steered fast association of superoxide and Cu/Zn superoxide dismutase, which is also simulated here. The results demonstrate the potential of an integrated and concerted application of structure-based simulations and biochemical network simulations in cellular systems biology.  相似文献   
65.
Extracellular antagonists of α4 integrin are an effective therapy for several autoimmune and inflammatory diseases; however, these agents that directly block ligand binding may exhibit mechanism-based toxicities. Inhibition of α4 integrin signaling by mutations of α4 that block paxillin binding inhibits inflammation while limiting mechanism-based toxicities. Here, we test a pharmacological approach by identifying small molecules that inhibit the α4 integrin-paxillin interaction. By screening a large (∼40,000-compound) chemical library, we identified a noncytotoxic inhibitor of this interaction that impaired integrin α4-mediated but not αLβ2-mediated Jurkat T cell migration. The identified compound had no effect on α4-mediated migration in cells bearing the α4(Y991A) mutation that disrupts the α4-paxillin interaction, establishing the specificity of its action. Administration of this compound to mice led to impaired recruitment of mononuclear leukocytes to a site of inflammation in vivo, whereas an isomer that does not inhibit the α4-paxillin interaction had no effect on α4-mediated cell migration, cell spreading, or recruitment of leukocytes to an inflammatory site. Thus, a small molecule inhibitor that interferes with α4 integrin signaling reduces α4-mediated T cell migration in vivo, thus providing proof of principle for inhibition of α4 integrin signaling as a target for the pharmacological reduction of inflammation.  相似文献   
66.
Neutrophil activation plays integral roles in host tissue damage and resistance to infectious diseases. As glucose uptake and NADPH availability are required for reactive oxygen metabolite production by neutrophils, we tested the hypothesis that pathological glucose levels (>or=12 mM) are sufficient to activate metabolism and reactive oxygen metabolite production in normal adherent neutrophils. We demonstrate that elevated glucose concentrations increase the neutrophil's metabolic oscillation frequency and hexose monophosphate shunt activity. In parallel, substantially increased rates of NO and superoxide formation were observed. However, these changes were not observed for sorbitol, a nonmetabolizable carbohydrate. Glucose transport appears to be important in this process as phloretin interferes with the glucose-specific receptor-independent activation of neutrophils. However, LY83583, an activator of glucose flux, promoted these changes at 1 mM glucose. The data suggest that at pathophysiologic concentrations, glucose uptake by mass action is sufficient to activate neutrophils, thus circumventing the normal receptor transduction mechanism. To enable us to mechanistically understand these dynamic metabolic changes, mathematical simulations were performed. A model for glycolysis in neutrophils was created. The results indicated that the frequency change in NAD(P)H oscillations can result from the activation of the hexose monophosphate shunt, which competes with glycolysis for glucose-6-phosphate. Experimental confirmation of these simulations was performed by measuring the effect of glucose concentrations on flavoprotein autofluorescence, an indicator of the rate of mitochondrial electron transport. Moreover, after prolonged exposure to elevated glucose levels, neutrophils return to a "nonactivated" phenotype and are refractile to immunologic stimulation. Our findings suggest that pathologic glucose levels promote the transient activation of neutrophils followed by the suppression of cell activity, which may contribute to nonspecific tissue damage and increased susceptibility to infections, respectively.  相似文献   
67.
68.
We investigated the occurrence and distribution of the ligand-binding alpha-subunits of nicotinic acetylcholine receptors in the rat arterial system in situ by means of RT-PCR and immunohistochemistry. Except the alpha9-subunit, all other mammalian non-muscular alpha-subunits were expressed in the arterial wall--either in endothelial or in smooth muscle cells--suggesting it as a direct target of nicotine and endogenous acetylcholine. The distribution pattern of alpha-subunits found in smooth muscle cells varied considerably among the individual elastic, muscular and intraparenchymal arteries investigated, suggesting that non-neuronal cholinergic signalling via nicotinic receptors in the vascular wall includes components that are highly specific for individual arteries.  相似文献   
69.
In dorsal root ganglia (DRG) intraganglionic communication takes place both among neurons and between neurons and satellite cells. One diffusible substance involved in this signalling is nitric oxide (NO), and acetylcholine (ACh) is a candidate for the stimulation of intraganglionic NO synthesis. DRG neurons react to ACh-receptor stimulation with NO-dependent cGMP production. Here, we investigated the role of the 7-subunit containing Ca2+-permeable nicotinic ACh receptors (nAChR) in this process. The 7-nAChR mRNA and the protein were expressed in virtually all lumbar DRG neurons as evidenced by laser-assisted cell picking and oligo cell RT-PCR, in situ hybridisation and immunohistochemistry. Strong 7-nAChR immunoreactivity was present in vanilloid receptor 1-immunoreactive, i.e. nociceptive, neurons. A neuronal production of NO in response to nicotine could be demonstrated in DRG slice preparations utilising the NO-sensitive fluorescent indicator diaminofluorescein diacetate (DAF-2DA). This stimulation of NO production was sensitive to inhibition of 7-nAChR by mecamylamine and -bungarotoxin, to inhibition of nitric oxide synthase (NOS) with L-NAME and L-NMMA, and to the blockade of voltage-operated Ca2+ channels by verapamil. The results show the presence of the 7-nAChR subunit in nociceptive rat DRG neurons and provide evidence for its coupling to NOS activation, indicating a role of this pathway in the intraganglionic communication in sensory ganglia.  相似文献   
70.
The peroxidase-oxidase reaction is known to involve reactive oxygen species as intermediates. These intermediates inactivate many types of biomolecules, including peroxidase itself. Previously, we have shown that oscillatory dynamics in the peroxidase-oxidase reaction seem to protect the enzyme from inactivation. It was suggested that this is due to a lower average concentration of reactive oxygen species in the oscillatory state compared to the steady state. Here, we studied the peroxidase-oxidase reaction with either 4-hydroxybenzoic acid or melatonin as cofactors. We show that the protective effect of oscillatory dynamics is present in both cases. We also found that the enzyme degradation depends on the concentration of the cofactor and on the pH of the reaction mixture. We simulated the oscillatory behaviour, including the oscillation/steady state bistability observed experimentally, using a detailed reaction scheme. The computational results confirm the hypothesis that protection is due to lower average concentrations of superoxide radical during oscillations. They also show that the shape of the oscillations changes with increasing cofactor concentration resulting in a further decrease in the average concentration of radicals. We therefore hypothesize that the protective effect of oscillatory dynamics is a general effect in this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号