首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   11篇
  248篇
  2021年   3篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   12篇
  2014年   10篇
  2013年   5篇
  2012年   11篇
  2011年   12篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   20篇
  2006年   15篇
  2005年   12篇
  2004年   9篇
  2003年   16篇
  2002年   10篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1965年   2篇
  1964年   1篇
  1961年   2篇
  1960年   1篇
  1955年   1篇
  1953年   1篇
  1952年   2篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
111.
112.
113.
Summary In one cypress dome in the Everglades National Park, cypress knees seem to develop from vertical root loops that grow along and ramify into dead cypress stumps. Nearly all young root loops emerge close to a decaying stump. The proportion of these associations decreases as the diameter and presumed age of the loops increase. Loop density correlates with the density of dead but not of live trunks. These preliminary findings suggest that the root loops emerge primarily near dead stumps and exploit their nutrients until the stumps rot away and the loops develop into mature knees.  相似文献   
114.
Granzyme M (GrM) is highly expressed in cytotoxic granules of NK cells, which provide the first line of defense against viral pathogens. GrM knockout mice show increased susceptibility toward murine CMV infection. Although GrM is a potent inducer of cell death, the mechanism by which GrM eliminates viruses remains elusive. In this paper, we show that purified human GrM in combination with the perforin-analog streptolysin O (SLO) strongly inhibited human CMV (HCMV) replication in fibroblasts in the absence of host cell death. In a proteomic approach, GrM was highly specific toward the HCMV proteome and most efficiently cleaved phosphoprotein 71 (pp71), an HCMV tegument protein that is critical for viral replication. Cleavage of pp71 occurred when viral lysates were incubated with purified GrM, when intact cells expressing recombinant pp71 were challenged with living cytotoxic effector cells, and when HCMV-infected fibroblasts were incubated with SLO and purified GrM. GrM directly cleaved pp71 after Leu(439), which coincided with aberrant cellular localization of both pp71 cleavage fragments as determined by confocal immunofluorescence. In a luciferase reporter assay, cleavage of pp71 after Leu(439) by GrM completely abolished the ability of pp71 to transactivate the HCMV major immediate-early promoter, which is indispensable for effective HCMV replication. Finally, GrM decreased immediate-early 1 protein expression in HCMV-infected fibroblasts. These results indicate that the NK cell protease GrM mediates cell death-independent antiviral activity by direct cleavage of a viral substrate.  相似文献   
115.
Floricolous downy mildews are a monophyletic group of members of the genus Peronospora (Oomycota, Peronosporales). These downy mildews can be found on a variety of families of the Asteridae, including Asteraceae, Campanulaceae, Dipsacaceae, Lamiaceae, and Orobanchaceae. With the exception of Peronospora radii, which can also cause economically relevant losses, sporulation usually takes place only on floral parts of their hosts. However, only very few specimens of these mostly inconspicuous downy mildews have so far been included in molecular phylogenies. Focusing on Lamiaceae, we have investigated multiple specimens of floricolous downy mildews for elucidating species boundaries and host specificity in this group. Based on both mitochondrial and nuclear loci, it became apparent that phylogenetic lineages in the Lamiaceae seem to be host genus specific and significant sequence diversity could be found between lineages. Based on distinctiveness in both phylogenetic reconstructions and morphology, the downy mildew on flowers of Stachys palustris is introduced as a new species, Peronospora jagei sp. nov., which can be morphologically distinguished from Peronospora stigmaticola by broader and shorter conidiospores. The diversity of the floricolous down mildews might be higher than previously assumed, although specimens from a much broader set of samples will be needed to confirm this view.  相似文献   
116.
Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended.  相似文献   
117.
Growing evidence shows that the soluble N-terminal form (sAPPalpha) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPalpha, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPalpha has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts.  相似文献   
118.
Many different agonists use calcium as a second messenger. Despite intensive research in intracellular calcium signalling it is an unsolved riddle how the different types of information represented by the different agonists, is encoded using the universal carrier calcium. It is also still not clear how the information encoded is decoded again into the intracellular specific information at the site of enzymes and genes. After the discovery of calcium oscillations, one likely mechanism is that information is encoded in the frequency, amplitude and waveform of the oscillations. This hypothesis has received some experimental support. However, the mechanism of decoding of oscillatory signals is still not known. Here, we study a mechanistic model of calcium oscillations, which is able to reproduce both spiking and bursting calcium oscillations. We use the model to study the decoding of calcium signals on the basis of co-operativity of calcium binding to various proteins. We show that this co-operativity offers a simple way to decode different calcium dynamics into different enzyme activities.  相似文献   
119.
Retrograde neuronal tracing in combination with double-labelling immunofluorescence was applied to distinguish the chemical coding of guinea-pig primary sensory neurons projecting to the adrenal medulla and cortex. Seven subpopulations of retrogradely traced neurons were identified in thoracic spinal ganglia T1-L1. Five subpopulations contained immunolabelling either for calcitonin gene-related peptide (CGRP) alone (I), or for CGRP, together with substance (P (II), substance P/dynorphin (III), substance P/cholecystokinin (IV), and substance P/nitric oxide synthase (V), respectively. Two additional subpopulations of retrogradely traced neurons were distinct from these groups: neurofilament-immunoreactive neurons (VI), and cell bodies that were nonreactive to either of the antisera applied (VII). Nerve fibres in the adrenal medulla and cortex were equipped with the mediator combinations I, II, IV and VI. An additional meshwork of fibres solely labelled for nitric oxide synthase was visible in the medulla. Medullary as well as cortical fibres along endocrine tissue apparently lacked the chemical code V, while in the external cortex some fibres exhibited code III. Some intramedullary neuronal cell bodies revealed immunostaining for nitric oxide synthase, CGRP or substance P, providing an additional intrinsic adrenal innervation. Perikarya, immunolabelled for nitric oxide synthase, however, were too few to match with the large number of intramedullary nitric oxide synthase-immunoreactive fibres. A non-sensory participation is also supposed for the particularly dense intramedullary network of solely neurofilament-immunoreactive nerve fibres. The findings give evidence for a differential sensory innervation of the guineapig adrenal cortex and medulla. Specific sensory neuron subpopulations suggest that nervous control of adrenal functions is more complex than hitherto believed.  相似文献   
120.

Background

Allograft vasculopathy (AV) and native atherosclerosis (NA) share the presence of a T-cell mediated inflammatory response, but differ in overall plaque morphology and growth rate. We studied the distribution and frequency of regulatory- and cytotoxic T cells in the arterial intima lesions in both conditions.

Methodology/Principal Findings

The study is based on vessels of 15 explanted human renal allografts with AV and 10 carotid artery plaques obtained at surgery. Distribution and frequency of cytotoxic- and regulatory T cells, as identified by the expression of Granzyme B (GrB) and FOXP3 was established in NA and AV. Furthermore, we compared the distribution of these cells in AV with the perivascular, interstitial renal tissue using immunohistochemistry. The total number of T cells was much higher in AV than in NA lesions (711±135 and 37±8 CD3/mm2 respectively, p<0.005, mean, ± SEM). Total numbers of FOXP3+ regulatory cells were also significantly increased in AV (36±10 and 0.9±0.3 FOXP3+/mm2 p<0.05), but relative numbers, expressed as a percentage of the total number of CD3+ T cells ((FOXP3+/CD3+) ×100), were not significantly different (4.6%±0.9 and 2.7%±0.6). GrB+ cells were rare in NA, but significantly increased numbers of GrB+ cells were found in AV lesions (85±24 and 0.2±0.1 GrB+/mm2, p<0.05). Perivascular tissues in the allografts showed a higher relative frequency of FOXP3+ cells than adjacent intimal lesions (14.0%±2.7 and 4.6%±0.9, respectively, p<0.05), but a lower frequency of GrB+ cytotoxic T cells (16.1%±2.7 and 22.6%±3.6, p<0.05).

Conclusions

Similar to NA, AV is characterized by a low frequency of intimal FOXP3+ regulatory T cells. Moreover, significant spatial differences exist in the distribution of functional T cell subsets between the intra- and extravascular micro-environments of the graft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号