首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   46篇
  2024年   1篇
  2022年   4篇
  2021年   15篇
  2020年   5篇
  2019年   6篇
  2018年   21篇
  2017年   9篇
  2016年   20篇
  2015年   30篇
  2014年   31篇
  2013年   34篇
  2012年   54篇
  2011年   49篇
  2010年   38篇
  2009年   34篇
  2008年   52篇
  2007年   58篇
  2006年   56篇
  2005年   65篇
  2004年   34篇
  2003年   48篇
  2002年   51篇
  2001年   8篇
  2000年   2篇
  1999年   12篇
  1998年   13篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1975年   3篇
排序方式: 共有819条查询结果,搜索用时 15 毫秒
81.
Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is suggested that the regulation of each division-related gene was established shortly after the endosymbiotic gene transfer, and this event occurred multiple times independently in distinct genes and in distinct lineages.  相似文献   
82.
Phycobilisome (PBS) is a photosynthetic antenna supercomplex consisting of a central core subcomplex with several peripheral rods radiating from the core. Subunit structure of PBS was studied in a glaucocystophyte Cyanophora paradoxa strain NIES 547. Subunit composition of PBS was identified by N-terminal sequencing and genes for the subunits were determined by homology search of databases. They included rod linker proteins CpcK1 and CpcK2, rod-core linker proteins CpcG1 and CpcG2, and core linker proteins ApcC1 and ApcC2. Subfractionation by native polyacrylamide gel electrophoresis provided evidence for novel subcomplexes (ApcE/CpcK1/CpcG2/ApcA/ApcB/CpcD and ApcE/CpcK2/CpcG1/ApcA/ApcB), which connect rod and core subcomplexes. These skeleton-like structures may serve as a scaffold of the whole PBS assembly. Different roles of ApcC1 and ApcC2 were also suggested. Based on these findings, structural models for PBS were proposed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
83.
Caspase-8 (CASP8) is a cysteine protease that plays a pivotal role in the extrinsic apoptotic signaling pathway via death receptors. The kinetics, dynamics, and selectivity with which the pathway transmits apoptotic signals to downstream molecules upon CASP8 activation are not fully understood. We have developed a system for using high-sensitivity FRET-based biosensors to monitor the protease activity of CASP8 and its downstream effector, caspase-3, in living single cells. Using this system, we systematically investigated the caspase cascade by regulating the magnitude of extrinsic signals received by the cell. Furthermore, we determined the molar concentration of five caspases and Bid required for hierarchical transmission of apoptotic signals in a HeLa cell. Based on these quantitative experimental data, we validated a mathematical model suitable for estimation of the kinetics and dynamics of caspases, which predicts the minimal concentration of CASP8 required to act as an initiator. Consequently, we found that less than 1% of the total CASP8 proteins are sufficient to set the apoptotic program in motion if activated. Taken together, our findings demonstrate the precise cascade of CASP8-mediated apoptotic signals through the extrinsic pathway.  相似文献   
84.
Roberts syndrome and SC phocomelia (RBS/SC) are genetic autosomal recessive syndromes caused by establishment of cohesion 1 homolog 2 ( ESCO 2) mutation. RBS/SC appear to have a variety of clinical features, even with the same mutation of the ESCO2 gene. Here, we established and genetically characterized a medaka model of RBS/SC by reverse genetics. The RBS/SC model was screened from a mutant medaka library produced by the Targeting Induced Local Lesions in Genomes method. The medaka mutant carrying the homozygous mutation at R80S in the conserved region of ESCO2 exhibited clinical variety (i.e. developmental arrest with craniofacial and chromosomal abnormalities and embryonic lethality) as characterized in RBS/SC. Moreover, widespread apoptosis and downregulation of some gene expression, including notch1a, were detected in the R80S mutant. The R80S mutant is the animal model for RBS/SC and a valuable resource that provides the opportunity to extend knowledge of ESCO2. Downregulation of some gene expression in the R80S mutant is an important clue explaining non-correlation between genotype and phenotype in RBS/SC.  相似文献   
85.
Lurasidone is a novel antipsychotic agent with high affinity for dopamine D2, 5-hydroxyltryptamine 5-HT2A, and 5-HT7 receptors. Lurasidone has negligible affinity for histamine H1 and muscarinic M1 receptors, which are thought to contribute to side effects such as weight gain, sedation, and worsening of cognitive deficits. Our interests focus on why lurasidone has such high selectivity for only a part of these aminergic G-protein coupled receptors (GPCRs) and the different binding profile from ziprasidone, which has the same benzisothiazolylpiperazine moiety as lurasidone. In order to address these issues, we constructed structural models of lurasidone–GPCR complexes by homology modeling of receptors, exhaustive docking of ligand, and molecular dynamics simulation-based refinement of complexes. This computational study gave reliable structural models for D2, 5-HT2A, and 5-HT7, which had overall structural complementarities with a salt bridge anchor at the center of the lurasidone molecule, but not for H1 and M1 owing to steric hindrance between the norbornane-2,3-dicarboximide and/or cyclohexane part of lurasidone and both receptors. By comparison with the structural models of olanzapine–GPCRs and ziprasidone–GPCRs constructed using the same computational protocols, it was suggested that the bulkiness of the norbornane-2,3-dicarboximide part and the rigidity and the bulkiness of the cyclohexyl linker gave lurasidone high selectivity for the desired aminergic GPCRs. Finally, this structural insight was validated by a binding experiment of the novel benzisothiazolylpiperazine derivatives. This knowledge on the structural mechanism behind the receptor selectivity should help to design new antipsychotic agents with preferable binding profiles, and the established computational protocols realize virtual screening and structure-based drug design for other central nervous system drugs with desired selectivity for multiple targets.  相似文献   
86.
To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals.  相似文献   
87.
The densities of barley and potato aphids, their natural enemies and hyperparasitoids were assessed in three experimental potato fields as a case study to investigate the effectiveness of the addition of barley strips in potato fields for conservation biological control. These fields were located in a low plant-diversity landscape, but common aphid species and their natural enemies were present. The barley strips in the potato fields were found to support different species of aphids of potato, but these different sets of aphids shared a common set of natural enemies. The amount of time between peak aphid densities and peaks of their natural enemies' populations was shorter in the potato fields than in the barley strips. The levels of winged aphids in a potato monoculture field were significantly higher than those in a field with barley strips. The wingless and winged aphid populations in the field without barley strips was almost three times higher than in the fields with the barley strips, as measured at the peak aphid density. This result is one of few examples of the application of the conservation effect of greenhouse banker plants on outdoor crops.  相似文献   
88.
89.
Sakai A  Takasu K  Sawada M  Suzuki H 《PloS one》2012,7(2):e32268
The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK(1). The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号