首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1039篇
  免费   38篇
  国内免费   1篇
  2023年   16篇
  2022年   39篇
  2021年   50篇
  2020年   25篇
  2019年   35篇
  2018年   53篇
  2017年   39篇
  2016年   49篇
  2015年   58篇
  2014年   66篇
  2013年   95篇
  2012年   100篇
  2011年   71篇
  2010年   32篇
  2009年   36篇
  2008年   37篇
  2007年   33篇
  2006年   25篇
  2005年   21篇
  2004年   16篇
  2003年   19篇
  2002年   17篇
  2001年   18篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   14篇
  1989年   8篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1958年   2篇
排序方式: 共有1078条查询结果,搜索用时 31 毫秒
121.
The present study examines the effects of 30 mg/kg butachlor on the cyanobacterial diversity of rice fields in Eastern Uttar Pradesh and Western Bihar in India. A total of 40 samples were grouped into three classes [(i) acidic, (ii) neutral, and (iii) alkaline soils], based on physicochemical and principle component analyses. Acidic soils mainly harbored Westillopsis, Trichormus, Anabaenopsis, and unicellular cyanobacteria; whereas Nostoc, Anabaena, Calothrix, Tolypothrix, and Aulosira were found in neutral and alkaline soils. Molecular characterization using 16S rRNA PCR and DGGE revealed the presence of 13 different phylotypes of cyanobacteria in these samples. Butachlor treatment of the soil samples led to the disappearance of 5 and the emergence of 2 additional phylotypes. A total of 40 DGGE bands showed significant reproducible changes upon treatment with butachlor. Phylogenetic analyses divided the phylotypes into five major clusters exhibiting interesting links with soil pH. Aulosira, Anabaena, Trichormus, and Anabaenopsis were sensitive to butachlor treatment, whereas uncultured cyanobacteria, a chroococcalean member, Westillopsis, Nostoc, Calothrix, Tolypothrix, Rivularia, Gloeotrichia, Fischerella, Leptolyngbya, and Cylindrospermum, appeared to be tolerant against butachlor at their native soil pH. Butachlor-induced inhibition of nitrogen fixation was found to be 65% (maximum) and 33% (minimum) in the soil samples of pH 9.23 and 5.20, respectively. In conclusion, low butachlor doses may prove beneficial in paddy fields having a neutral to alkaline soil pH.  相似文献   
122.

Background

Interleukin 4 (IL-4) is an anti-inflammatory cytokine, which regulates balance between TH1 and TH2 immune response, immunoglobulin class switching and humoral immunity. Polymorphisms in this gene have been reported to affect the risk of infectious and autoimmune diseases.

Methods

We have analyzed three regulatory IL-4 polymorphisms; -590C>T, -34C>T and 70 bp intron-3 VNTR, in 4216 individuals; including: (1) 430 ethnically matched case-control groups (173 severe malaria, 101 mild malaria and 156 asymptomatic); (2) 3452 individuals from 76 linguistically and geographically distinct endogamous populations of India, and (3) 334 individuals with different ancestry from outside India (84 Brazilian, 104 Syrian, and 146 Vietnamese).

Results

The -590T, -34T and intron-3 VNTR R2 alleles were found to be associated with reduced malaria risk (P<0.001 for -590C>T and -34C>T, and P = 0.003 for VNTR). These three alleles were in strong LD (r2>0.75) and the TTR2 (-590T, -34T and intron-3 VNTR R2) haplotype appeared to be a susceptibility factor for malaria (P = 0.009, OR = 0.552, 95% CI = 0.356 –0.854). Allele and genotype frequencies differ significantly between caste, nomadic, tribe and ancestral tribal populations (ATP). The distribution of protective haplotype TTR2 was found to be significant (χ2 3 = 182.95, p-value <0.001), which is highest in ATP (40.5%); intermediate in tribes (33%); and lowest in caste (17.8%) and nomadic (21.6%).

Conclusions

Our study suggests that the IL-4 polymorphisms regulate host susceptibility to malaria and disease progression. TTR2 haplotype, which gives protection against malaria, is high among ATPs. Since they inhabited in isolation and mainly practice hunter-gatherer lifestyles and exposed to various parasites, IL-4 TTR2 haplotype might be under positive selection.  相似文献   
123.
A Kumari  V Kumar  SK Yadav 《PloS one》2012,7(7):e41230

Background

Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin.

Methodology/Principal Findings

Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule.

Conclusions

This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other polymeric NPs of smaller size.  相似文献   
124.
Kumari S  Mehta SL  Li PA 《PloS one》2012,7(6):e39382
Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human.  相似文献   
125.
A Kumari  SK Yadav  S Ali 《PloS one》2012,7(7):e41488
Male fertility is an orchestrated interplay of loci on the Y chromosome with a number of genes from across the other chromosomes. In this context, micro-deletions in the Y chromosome have been correlated with spermatogenic failure often leading to infertility. However, causes of infertility in the patients with the normal spermiogram have remained unclear and therefore pose another level of challenge. In the present study, we analyzed 64 STSs, studied different Y-linked genes and loci and conducted single nucleotide variant (SNV) analyses in 31 infertile males with normal spermiogram along with 67 normal fertile males (NFMs) to gain an insight into the organization of their Y chromosome. Further, employing quantitative real-time PCR (qPCR), we studied copy number variation of DYZ1 arrays and three genes and mutational status of SRY by direct sequence analyses. STS analyses of the AZFa, b and c regions in these patients showed known and new mutations. Further, copies of DAZ and BPY2 in the patients were found to be affected [Formula: see text] compared to those in NFMs. All the patients had normal copy number of the SRY however its sequence analysis (in silico) showed mutations in eight patients. In four of these eight patients, SRY mutations resulted into truncated proteins. Similarly, DYZ1 analysis showed micro-deletions and it's much reduced copy number [Formula: see text] as compared to those in NFMs. Present study in males with unexplained infertility revealed deletions similar to those observed in oligospermic and azoospermic patients. Thus, there are some common but still unknown factors underlying infertility in these patients irrespective of their spermatogenic status. This work is envisaged to augment DNA diagnosis, proving beneficial in the context of in vitro fertilization (IVF) and genetic counselling.  相似文献   
126.
127.
128.
Formaldehyde is a reactive chemical that is commonly used in the production of industrial, laboratory, household, and cosmetic products. The causal association between formaldehyde exposure and increased incidence of cancer led the International Agency for Research on Cancer to classify formaldehyde as a carcinogen. Formaldehyde-induced DNA-protein crosslinks (DPCs) elicit responses involving nucleotide excision repair (NER) and homologous recombination (HR) repair pathways; however, little is known about the cellular and genetic changes that subsequently lead to formaldehyde-induced genotoxic and cytotoxic effects. Herein, investigations of genes that modulate the cytotoxic effects of formaldehyde exposure revealed that of five NER-deficient Chinese Hamster Ovary (CHO) cell lines tested, XPF- and ERCC1-deficient cells were most sensitive to formaldehyde treatment as compared to wild-type cells. Cell cycle analyses revealed that formaldehyde-treated XPF-deficient cells exhibited an immediate G2/M arrest that was associated with altered cell ploidy and apoptosis. Additionally, an elevated number of DNA double-strand breaks (DSBs), chromosomal breaks and radial formation were also observed in XPF-deficient cells following formaldehyde treatment. Formaldehyde-induced DSBs occurred in a replication-dependent, but an XPF-independent manner. However, delayed DSB repair was observed in the absence of XPF function. Collectively, our findings highlight the role of an XPF-dependent pathway in mitigating the sensitivity to formaldehyde-induced DNA damage as evidenced by the increased genomic instability and reduced cell viability in an XPF-deficient background. In addition, centrosome and microtubule abnormalities, as well as enlarged nuclei, caused by formaldehyde exposure are demonstrated in a repair-proficient cell line.  相似文献   
129.

Background

Nyctanthes arbor-tristis (Harshringar, Night Jasmine) has been traditionally used in Ayurveda, Unani and other systems of medicine in India. The juice of its leaves has been used by various tribal populations of India in treatment of fevers resembling malaria.

Aim of the study

This work reports the antiplasmodial activity guided fractionation of Harshringar leaves extract.

Methodology

Crude ethanolic Harshringar leaves extract and its RPHPLC purified fractions were studied for antiplasmodial potency against 3D7 (CQ sensitive) and Dd2 (CQ resistant) strains of P.falciparum and subsequently subjected to bioassay guided fractionation using reverse phase chromatography to pursue the isolation of active fractions.

Principal Findings

Harshringar crude leaves extract and some of its RPHPLC purified fractions exhibited promising antiplasmodial potency against 3D7 and Dd2 strains of P.falciparum.

Conclusions

The present study has provided scientific validity to the traditional use of leaves extract of Harshringar against malaria leading to the conclusion that this plant holds promise with respect to antimalarial phytotherapy. This is the first scientific report of antiplasmodial activity of RPHPLC fractions of Harshringar leaves extract against P.falciparum strains.  相似文献   
130.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号