首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   18篇
  263篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   17篇
  2013年   20篇
  2012年   22篇
  2011年   19篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   14篇
  2006年   12篇
  2005年   14篇
  2004年   10篇
  2003年   10篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有263条查询结果,搜索用时 0 毫秒
41.
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix‐producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft‐specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal‐localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.  相似文献   
42.
The discovery of 5-hydroxymethyl-cytosine (5hmC) in mammalian cells prompted us to look for this base in the DNA of Arabidopsis thaliana (thale cress), and to ask how well the Arabidopsis Variant in Methylation 1 (VIM1) protein, an essential factor in maintaining 5-cytosine methylation (5mC) homeostasis and epigenetic silencing in this plant, recognizes this novel base. We found that the DNA of Arabidopsis' leaves and flowers contain low levels of 5hmC. We also cloned and expressed in Escherichia coli full-length VIM1 protein, the archetypal member of the five Arabidopsis VIM gene family. Using in vitro binding assays, we observed that full-length VIM1 binds preferentially to hemi-methylated DNA with a single modified 5mCpG site; this result is consistent with its known role in preserving DNA methylation in vivo following DNA replication. However, when 5hmC replaces one or both cytosine residues at a palindromic CpG site, VIM1 binds with approximately ≥10-fold lower affinity. These results suggest that 5hmC may contribute to VIM-mediated passive loss of cytosine methylation in vivo during Arabidopsis DNA replication.  相似文献   
43.
Kumaran RI  Thakar R  Spector DL 《Cell》2008,132(6):929-934
The mammalian cell nucleus provides a landscape where genes are regulated through their organization and association with freely diffusing proteins and nuclear domains. In many cases, specific genes are highly dynamic, and the principles governing their movements and interchromosomal interactions are currently under intensive study. Recent investigations have implicated actin and myosin in chromatin dynamics and gene expression. Here, we discuss our current understanding of the dynamics of the interphase genome and how it impacts nuclear organization and gene activity.  相似文献   
44.
Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1.  相似文献   
45.
Asplenia is associated with an increased incidence of fatal and life-threatening sepsis caused by encapsulated pathogens. Isolated congenital asplenia is a very rare condition, with only 33 cases reported in the literature. The authors report another case of this condition complicated by overwhelming Group B streptococcus sepsis secondary to paronychia that was managed successfully.  相似文献   
46.
Recombineering technology permits flexible engineering of large DNA in Escherichia coli without dependence on suitably placed restriction sites. However, recombineering is limited for modifying highly repetitive DNA because of its potential to trigger instability by uncontrolled self-recombination of the repeats. In this study, induction of the recombineering enzymes and growth condition of the host are optimized to demonstrate intact modification of bacterial artificial chromosomes (BACs) containing long arrays of centromeric alpha satellite repeats. This optimized recombineering protocol may be useful for manipulation of other biologically important repetitive DNAs, including trinucleotide repeat expansions and homologous gene families, to facilitate their functional studies.  相似文献   
47.
[2-14C]Acetone was infused into rats that were fed or fasted. Each was infused with either a trace quantity of acetone or a large quantity that resulted in a blood concentration of acetone of at least 4 mM. The distribution of 14C in the carbons of glucose from each rat was determined. Two of the rats were given acetone in their drinking water and one was diabetic. Whether a rat was chronically exposed to acetone, fed or fasted, normal or diabetic, if given the trace dose, over 80% of the 14C in the glucose it formed was in carbons 1, 2, 5, and 6 of the glucose. If a rat was given the large dose, about 50% was in carbons 3 and 4. Thus, the major determinant of the pathways followed by acetone when it is metabolized is its concentration and not the prior dietary state of the animal or its previous exposure to acetone. Incorporation into carbons 1, 2, 5, and 6 occurs in the conversion of the carbons of [2-14C]lactate into glucose, whereas incorporation into carbons 3 and 4 occurs in the conversion of the carbons of [1-14C]acetate into glucose. Therefore, at high acetone concentration, the pathway that has been proposed for acetone's metabolism via acetate predominates, and via acetate there can be no net synthesis of glucose from acetone. When rats were given cyanamide and then the large dose of acetone, 74% of the 14C in the glucose they formed was in carbons 3 and 4 of the glucoses. Thus, the relative contribution of the pathway to lactate, or its metabolic equivalent, that has been proposed appears to be lessened by the administration of an aldehyde dehydrogenase inhibitor.  相似文献   
48.
Juvenile hormone esterase (JHE) activity, ecdysone titre, and developmental competence of the epidermis were determined in last instar larvae and pupae of Galleria mellonella. Haemolymph JHE activity reaches a peak before increases are observed in ecdysone titre both during larval-pupal and pupal-adult metamorphosis. JHE activity is low during the penultimate larval instar although general esterase activity is relatively high. In last instar larvae two ecdysone peaks are noted after the increase in JHE activity. Furthermore, epidermal cell reprogramming occurs just after the increase in haemolymph JHE activity and possibly before the first increase in ecdysone titre. This was tested by injection of high doses of β-ecdysone into last instar larvae of different ages resulting in rapid cuticle deposition. Reprogramming occurred if the resulting cuticle was of the pupal type. These correlative observations may increase our understanding of the relative importance of an ecdysone surge in the absence of JH in reprogramming of the insect epidermis.  相似文献   
49.
Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0–9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu2+ enhanced the activity of the purified enzyme but was inhibited by Zn2+ and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号