首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   18篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   17篇
  2013年   20篇
  2012年   22篇
  2011年   19篇
  2010年   15篇
  2009年   11篇
  2008年   17篇
  2007年   14篇
  2006年   12篇
  2005年   14篇
  2004年   10篇
  2003年   10篇
  2002年   10篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   3篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
141.
142.
Ramamurthi KS  Losick R 《Cell》2008,134(6):916-918
Chromosome segregation in the bacterium Caulobacter crescentus involves propulsion of the replication origin and its capture at one pole of the cell. Bowman et al. (2008) and Ebersbach et al. (2008) now report the discovery of a protein called PopZ that mediates this chromosome capture.  相似文献   
143.
Outer surface protein C (OspC) is a major antigen on the surface of the Lyme disease spirochete, Borrelia burgdorferi, when it is being transmitted to humans. Crystal structures of OspC have been determined for strains HB19 and B31 to 1.8 and 2.5 A resolution, respectively. The three-dimensional structure is predominantly helical. This is in contrast to the structure of OspA, a major surface protein mainly present when spirochetes are residing in the midgut of unfed ticks, which is mostly beta-sheet. The surface of OspC that would project away from the spirochete's membrane has a region of strong negative electrostatic potential which may be involved in binding to positively charged host ligands. This feature is present only on OspCs from strains known to cause invasive human disease.  相似文献   
144.
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ~200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.  相似文献   
145.
Pathogenic Yersinia spp. secrete Yop proteins via the type III pathway. yopQ codons 1 to 15 were identified as a signal necessary and sufficient for the secretion of a fused reporter protein. Frameshift mutations that alter codons 2 to 15 with little alteration of yopQ mRNA sequence do not abolish type III transport, suggesting a model in which yopQ mRNA may provide a signal for secretion (D. M. Anderson and O. Schneewind, Mol. Microbiol. 31:1139-1148, 2001). In a recent study, the yopE signal was truncated to codons 1 to 12. All frameshift mutations introduced within the first 12 codons of yopE abolished secretion. Also, multiple synonymous mutations that changed the mRNA sequence of yopE codons 1 to 12 without altering the amino acid sequence did not affect secretion. These results favor a model whereby an N-terminal signal peptide initiates YopE into the type III pathway (S. A. Lloyd et al., Mol. Microbiol. 39:520-531, 2001). It is reported here that codons 1 to 10 of yopQ act as a minimal secretion signal. Further truncation of yopQ, either at codon 10 or at codon 2, abolished secretion. Replacement of yopQ AUG with either of two other start codons, UUG or GUG, did not affect secretion. However, replacement of AUG with CUG or AAA and initiating translation at the fusion site with npt did not permit Npt secretion, suggesting that the translation of yopQ codons 1 to 15 is a prerequisite for secretion. Frameshift mutations of yopQ codons 1 to 10, 1 to 11, and 1 to 12 abolished secretion signaling, whereas frameshift mutations of yopQ codons 1 to 13, 1 to 14, and 1 to 15 did not. Codon changes at yopQ positions 2 and 10 affected secretion signaling when placed within the first 10 codons but had no effect when positioned in the larger fusion of yopQ codons 1 to 15. An mRNA mutant of yopQ codons 1 to 10, generated by a combination of nine synonymous mutations, was defective in secretion signaling, suggesting that the YopQ secretion signal is not proteinaceous. A model is discussed whereby the initiation of YopQ polypeptide into the type III pathway is controlled by properties of yopQ mRNA.  相似文献   
146.
Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.  相似文献   
147.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   
148.
149.
150.
Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαqs, Gαq/Gα11,i1, and Gβ1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca2+ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132. The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00652-0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号