首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   25篇
  445篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   25篇
  2014年   17篇
  2013年   32篇
  2012年   33篇
  2011年   27篇
  2010年   28篇
  2009年   20篇
  2008年   30篇
  2007年   23篇
  2006年   25篇
  2005年   18篇
  2004年   20篇
  2003年   8篇
  2002年   14篇
  2001年   7篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
81.
Abstract

Optimizing the production of the high-value renewables such as OMEGAs through pathway engineering requires an in-depth understanding of the structure–function relationship of genes involved in the OMEGA biosynthetic pathways. In this preliminary study, our rationale is to identify and characterize the ~221 putative genes involved in production of OMEGAs using bioinformatic analysis from the Streptophyte (plants), Chlorophyte (green algae), Rhodophyta (red algae), and Bacillariophyta (diatoms) lineages based on their phylogenomic profiling, conserved motif/domain organization and physico-chemical properties. The MEME suite predicted 12 distinct protein domains, which are conserved among these putative genes. The phylogenomic analysis of the putative candidate genes [such as FAD2 (delta-12 desaturase); ECR (enoyl-CoA reductase); FAD2 (delta-12 desaturase); ACOT (acyl CoA thioesterase); ECH (enoyl-CoA hydratase); and ACAT (acetyl-CoA acyltransferase)] with similar domains and motif patterns were remarkably well conserved. Furthermore, the subcellular network prediction of OMEGA biosynthetic pathway genes revealed a unique interaction between the light-dependent chlorophyll biosynthesis and glycerol-3-phosphate dehydrogenase, which predicts a major cross-talk between the key essential pathways. Such bioinformatic analysis will provide insights in finding the key regulatory genes to optimize the productivity of OMEGAs in microalgal cell factories.  相似文献   
82.
Oxidative stress is a key step in the pathogenesis of ethanol associated liver injury. Ethanol administration induces an increase in lipid peroxidation either by enhancing the production of oxygen reactive species or by decreasing the level of endogenous antioxidants. In this present study, four groups of male guinea pigs (Cavia porcellus) were maintained for 45 days as follows: Control group (1 mg ascorbic acid (AA)/100 g body wt./day); Ethanol group (1 mg AA/100 g body wt./day+900 mg ethanol/100 g body wt./day); Selenium+AA group (25 mg AA+0.05 mg sodium selenite/100 g body wt./day); Ethanol+Se+AA group (25 mg AA+0.05 mg sodium selenite/100 g body wt.+900 mg ethanol/100 g body wt./day). Malondialehyde (MDA), hydroperoxides (HP) and conjugated dienes (CD) were significantly increased, while the activities of scavenging enzymes superoxide dismutase (SOD) and catalase were reduced in the alcohol administered groups. Co-administration of Se+AA along with alcohol increased the activities of scavenging enzymes and reduced the lipid peroxidation products level in hepatic tissues of guinea pigs. Activities of glutathione peroxidase (GPX) and glutathione reductase (GR) were enhanced in co-administered group. gamma-Glutamyl transpeptidase (GGT), a marker enzyme of alcohol induced toxicity, was also reduced, as was the glutathione content. This study suggests that the combined effect of Se+AA, provides protection against alcohol-induced oxidative stress as evidenced from the decreased levels of lipid peroxidation products and enhanced activities of scavenging enzymes.  相似文献   
83.
Successive extracts of Tribulus terrestris prepared using petroleum ether, chloroform, 50% methanol and water were tested for anthelmintic activity in-vitro using the nematode Caenorhabditis elegans. The activity could be detected only in 50% methanol extract which on further bioactivity guided fractionation and chromatographic separation yielded a spirostanol type saponin, tribulosin and beta-sitosterol-D-glucoside. Both the compounds exhibited anthelmintic activity with ED50 of 76.25 and 82.50 microg/ml respectively.  相似文献   
84.
Type 1 diabetes is caused by the destruction of insulin producing beta cells by the immune system. The p110δ isoform of PI3K is expressed primarily in cells of haematopoietic origin and the catalytic activity of p110δ is important for the activation of these cells. Targeting of this pathway offers an opportunity to reduce immune cell activity without unwanted side effects. We have explored the effects of a specific p110δ isoform inhibitor, IC87114, on diabetogenic T cells both in vitro and in vivo, and find that although pharmacological inhibition of p110δ has a considerable impact on the production of pro-inflammatory cytokines, it does not delay the onset of diabetes after adoptive transfer of diabetogenic cells. Further, we demonstrate that combination treatment with CTLA4-Ig does not improve the efficacy of treatment, but instead attenuates the protective effects seen with CTLA4-Ig treatment alone. Our results suggest that decreased IL-10 production by Foxp3+ CD4+ T cells in the presence of IC87114 negates individual anti-inflammatory effects of IC8114 and CTLA4-Ig.  相似文献   
85.
Polygalacturonase produced by Streptomyces lydicus was purified to homogeneity by ultrafiltration and a combination of ion exchange and gel filtration chromatographic procedures. The purified enzyme was an exo-polygalacturonase with a molecular weight of 43 kDa. It was optimally active at 50 degrees C and pH 6.0. The enzyme was stable from pH 4.0 to 7.0 and at or below 45 degrees C for 90 min. K(m) value for polygalacturonic acid was 1.63 mg/mL and the corresponding V(max) was 677.8 microM min(-1) mg(-1). The inhibition constant (K(i)) for gluconic acid d-lactone was 20.75 mM. Purified enzyme had been inhibited by N-bromosuccinimide, while l-tryptophan could induce enzyme activity, indicating the involvement of tryptophan at the active site.  相似文献   
86.
87.
Tumor recurrence after chemotherapy or radiation remains a major obstacle to successful cancer treatment. A subset of cancer cells, termed cancer stem cells, can elude conventional treatments and eventually regenerate a tumor that is more aggressive. Despite the large number of studies, molecular events that govern the emergence of aggressive therapy-resistant cells with stem cell properties after chemotherapy are poorly defined. The present study provides evidence for the rare escape of tumor cells from drug-induced cell death, after an intermediate stay in a non-cycling senescent stage followed by unstable multiplication characterized by spontaneous cell death. However, some cells appear to escape and generate stable colonies with an aggressive tumor stem cell-like phenotype. These cells displayed higher CD133 and Oct-4 expression. Notably, the drug-selected cells that contained low levels of reactive oxygen species (ROS) also showed an increase in antioxidant enzymes. Consistent with this in vitro experimental data, we observed lower levels of ROS in breast tumors obtained after neoadjuvant chemotherapy compared with samples that did not receive preoperative chemotherapy. These latter tissues also expressed enhanced levels of ROS defenses with enhanced expression of superoxide dismutase. Higher levels of Oct-4 and CD133 were also observed in tumors obtained after neoadjuvant chemotherapy. Further studies provided evidence for the stabilization of Nrf2 due to reduced 26 S proteasome activity and increased p21 association as the driving signaling event that contributes to the transition from a high ROS quiescent state to a low ROS proliferating stage in drug-induced tumor stem cell enrichment.  相似文献   
88.
Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM) and its binding protein-1 (AMBP-1) is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle) or AM/AMBP-1 (96/320 μg kg BW) was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO), increased cytokine levels (IL-6 and TNF-α), angiogenesis (CD31, VEGF and TGFβ-1) and cell proliferation (Ki67). By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels) and Masson-Trichrome staining (collagen deposition) along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing.  相似文献   
89.

Background

The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA), lysozyme (Lys), or myoglobin (Mb) used to load hydrophobic drugs such as quercetin (Q) and other flavonoids.

Results

Induced by dimethyl sulfoxide (DMSO), BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated.

Conclusions

BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.  相似文献   
90.
This paper deals with stochasticm-compartmental systems with continuous time-dependent infusions into all compartments and reversible time-independent flows between any two compartments. A methodology for the first two moments of the distribution of the number of units in the different compartments at any point in time is outlined without resorting to the usual techniques of generating functions and inverse Laplace transforms. A possible application to a systems analysis of the kidney transplant system is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号