首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
  144篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   9篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   8篇
  1998年   11篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有144条查询结果,搜索用时 18 毫秒
81.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   
82.
Hydroperoxide-induced tyrosyl radicals are putative intermediates in cyclooxygenase catalysis by prostaglandin H synthase (PGHS)-1 and -2. Rapid-freeze EPR and stopped-flow were used to characterize tyrosyl radical kinetics in PGHS-1 and -2 reacted with ethyl hydrogen peroxide. In PGHS-1, a wide doublet tyrosyl radical (34-35 G) was formed by 4 ms, followed by transition to a wide singlet (33-34 G); changes in total radical intensity paralleled those of Intermediate II absorbance during both formation and decay phases. In PGHS-2, some wide doublet (30 G) was present at early time points, but transition to wide singlet (29 G) was complete by 50 ms. In contrast to PGHS-1, only the formation kinetics of the PGHS-2 tyrosyl radical matched the Intermediate II absorbance kinetics. Indomethacin-treated PGHS-1 and nimesulide-treated PGHS-2 rapidly formed narrow singlet EPR (25-26 G in PGHS-1; 21 G in PGHS-2), and the same line shapes persisted throughout the reactions. Radical intensity paralleled Intermediate II absorbance throughout the indomethacin-treated PGHS-1 reaction. For nimesulide-treated PGHS-2, radical formed in concert with Intermediate II, but later persisted while Intermediate II relaxed. These results substantiate the kinetic competence of a tyrosyl radical as the catalytic intermediate for both PGHS isoforms and also indicate that the heme redox state becomes uncoupled from the tyrosyl radical in PGHS-2.  相似文献   
83.
Rogge CE  Ho B  Liu W  Kulmacz RJ  Tsai AL 《Biochemistry》2006,45(2):523-532
Both prostaglandin H synthase (PGHS) isoforms utilize a radical at Tyr385 to abstract a hydrogen atom from arachidonic acid, initializing prostaglandin synthesis. A Tyr348-Tyr385 hydrogen bond appears to be conserved in both isoforms; this hydrogen bonding has the potential to modulate the positioning and reactivity of the Tyr385 side chain. The EPR signal from the Tyr385 radical undergoes a time-dependent transition from a wide doublet to a wide singlet species in both isoforms. In PGHS-2, this transition results from radical migration from Tyr385 to Tyr504. Localization of the radical to Tyr385 in the recombinant human PGHS-2 Y504F mutant was exploited in examining the effects of blocking Tyr385 hydrogen bonding by introduction of a further Y348F mutation. Cyclooxygenase and peroxidase activities were found to be maintained in the Y348F/Y504F mutant, but the Tyr385 radical was formed more slowly and had greater rotational freedom, as evidenced by observation of a transition from an initial wide doublet species to a narrow singlet species, a transition not seen in the parent Y504F mutant. The effect of disrupting Tyr385 hydrogen bonding on the cyclooxygenase active site structure was probed by examination of cyclooxygenase inhibitor kinetics. Aspirin treatment eliminated all oxygenase activity in the Y348F/Y504F double mutant, with no indication of the lipoxygenase activity observed in aspirin-treated wild-type PGHS-2. Introduction of the Y348F mutation also strengthened the time-dependent inhibitory action of nimesulide. These results suggest that removal of Tyr348-Tyr385 hydrogen bonding in PGHS-2 allows greater conformational flexibility in the cyclooxygenase active site, resulting in altered interactions with inhibitors and altered Tyr385 radical behavior.  相似文献   
84.
J Marc  CL Granger  J Brincat  DD Fisher  Th Kao  AG McCubbin    RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation.  相似文献   
85.
Moran C  Catterall CP  Green RJ  Olsen MF 《Oecologia》2004,141(4):584-595
Seed dispersal plays a critical role in rainforest regeneration patterns, hence loss of avian seed dispersers in fragmented landscapes may disrupt forest regeneration dynamics. To predict whether or not a plant will be dispersed in fragmented forests, it is necessary to have information about frugivorous bird distribution and dietary composition. However, specific dietary information for frugivorous birds is often limited. In such cases, information on the seed-crushing behaviour, gape width and relative dietary dominance by fruit may be used to describe functional groups of bird species with respect to their potential to disperse similar seeds. We used this information to assess differences in the seed dispersal potential of frugivorous bird assemblages in a fragmented rainforest landscape of southeast Queensland, Australia. The relative abundance of frugivorous birds was surveyed in extensive, remnant and regrowth rainforest sites (16 replicates of each). Large-gaped birds with mixed diets and medium-gaped birds with fruit-dominated diets were usually less abundant in remnants and regrowth than in continuous forest. Small-gaped birds with mixed diets and birds with fruit as a minor dietary component were most abundant in regrowth. We recorded a similar number of seed-crushing birds and large-gaped birds with fruit-dominated diets across site types. Bird species that may have the greatest potential to disperse a large volume and wide variety of plants, including large-seeded plants, tended to be less abundant outside of extensive forests, although one species, the figbird Sphecotheres viridis, was much more abundant in these areas. The results suggest that the dispersal of certain plant taxa would be limited in this fragmented landscape, although the potential for the dispersal of large-seeded plants may remain, despite the loss of several large-gaped disperser species.  相似文献   
86.
Biosynthesis of prostanoid lipid signaling agents from arachidonic acid begins with prostaglandin H synthase (PGHS), a hemoprotein in the myeloperoxidase family. Vertebrates from humans to fish have two principal isoforms of PGHS, termed PGHS-1 and-2. These two isoforms are structurally quite similar, but they have very different pathophysiological roles and are regulated very differently at the level of catalysis. The focus of this review is on the structural and biochemical distinctions between PGHS-1 and-2, and how these differences relate to the functional divergence between the two isoforms.  相似文献   
87.

Background  

Previously it has been shown that insulin-mediated tyrosine phosphorylation of myosin heavy chain is concomitant with enhanced association of C-terminal SRC kinase during skeletal muscle differentiation. We sought to identify putative site(s) for this phosphorylation event.  相似文献   
88.
The cyclooxygenase and peroxidase activities of prostaglandin H synthase (PGHS)-1 and -2 have complex kinetics, with the cyclooxygenase exhibiting feedback activation by product peroxide and irreversible self-inactivation, and the peroxidase undergoing an independent self-inactivation process. The mechanistic bases for these complex, non-linear steady-state kinetics have been gradually elucidated by a combination of structure/function, spectroscopic and transient kinetic analyses. It is now apparent that most aspects of PGHS-1 and -2 catalysis can be accounted for by a branched chain radical mechanism involving a classic heme-based peroxidase cycle and a radical-based cyclooxygenase cycle. The two cycles are linked by the Tyr385 radical, which originates from an oxidized peroxidase intermediate and begins the cyclooxygenase cycle by abstracting a hydrogen atom from the fatty acid substrate. Peroxidase cycle intermediates have been well characterized, and peroxidase self-inactivation has been kinetically linked to a damaging side reaction involving the oxyferryl heme oxidant in an intermediate that also contains the Tyr385 radical. The cyclooxygenase cycle intermediates are poorly characterized, with the exception of the Tyr385 radical and the initial arachidonate radical, which has a pentadiene structure involving C11-C15 of the fatty acid. Oxygen isotope effect studies suggest that formation of the arachidonate radical is reversible, a conclusion consistent with electron paramagnetic resonance spectroscopic observations, radical trapping by NO, and thermodynamic calculations, although moderate isotope selectivity was found for the H-abstraction step as well. Reaction with peroxide also produces an alternate radical at Tyr504 that is linked to cyclooxygenase activation efficiency and may serve as a reservoir of oxidizing equivalent. The interconversions among radicals on Tyr385, on Tyr504, and on arachidonate, and their relationships to regulation and inactivation of the cyclooxygenase, are still under active investigation for both PGHS isozymes.  相似文献   
89.
Immunohistochemistry (IHC) is used to detect antibody-specific antigens in tissues; the results depend on the ability of the primary antibodies to bind to their antigens. Therefore, results depend on the quality of preservation of the specimen. Many investigators have overcome the deleterious effects of over-fixation on the binding of primary antibodies to specimen antigens using IHC, but if the specimen is under-fixed or fixation is delayed, false negative results could be obtained despite certified laboratory practices. Microtubule-associated protein 2 (MAP2) is an abundant microtubule-associate protein that participates in the outgrowth of neuronal processes and synaptic plasticity; it is localized primarily in cell bodies and dendrites of neurons. MAP2 immunolabeling has been reported to be absent in areas of the entorhinal cortex and hippocampus of Alzheimer’s disease brains that were co-localized with the dense-core type of amyloid plaques. It was hypothesized that the lack of MAP2 immunolabeling in these structures was due to the degradation of the MAP2 antigen by the neuronal proteases that were released as the neurons lysed leading to the formation of these plaques. Because MAP2 is sensitive to proteolysis, we hypothesized that changes in MAP2 immunolabeling may be correlated with the degree of fixation of central nervous system (CNS) tissues. We detected normal MAP2 immunolabeling in fixed rat brain tissues, but MAP2 immunolabeling was decreased or lost in unfixed and delayed-fixed rat brain tissues. By contrast, two ubiquitous CNS-specific markers, myelin basic protein and glial fibrillary acidic protein, were unaffected by the degree of fixation in the same tissues. Our observations suggest that preservation of various CNS-specific antigens differs with the degree of fixation and that the lack of MAP2 immunolabeling in the rat brain may indicate inadequate tissue fixation. We recommend applying MAP2 IHC for all CNS tissues as a pre-screen to assess the quality of the tissue preservation and to avoid potentially false negative IHC results.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号