首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1214篇
  免费   78篇
  国内免费   2篇
  1294篇
  2022年   14篇
  2021年   26篇
  2020年   19篇
  2019年   9篇
  2018年   19篇
  2017年   22篇
  2016年   38篇
  2015年   42篇
  2014年   43篇
  2013年   70篇
  2012年   56篇
  2011年   75篇
  2010年   34篇
  2009年   41篇
  2008年   53篇
  2007年   51篇
  2006年   42篇
  2005年   44篇
  2004年   43篇
  2003年   30篇
  2002年   36篇
  2001年   30篇
  2000年   32篇
  1999年   29篇
  1998年   14篇
  1997年   12篇
  1996年   8篇
  1995年   12篇
  1992年   14篇
  1991年   16篇
  1990年   11篇
  1989年   12篇
  1988年   9篇
  1987年   11篇
  1986年   16篇
  1985年   12篇
  1984年   8篇
  1980年   11篇
  1979年   14篇
  1978年   8篇
  1977年   12篇
  1974年   7篇
  1973年   10篇
  1968年   8篇
  1966年   13篇
  1936年   9篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1929年   8篇
排序方式: 共有1294条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
Dentin sialoprotein and dentin phosphoprotein are non-collagenous proteins that are cleavage products of dentin sialophosphoprotein (DSPP). Although these two protein products are believed to have a crucial role in the process of tooth mineralization, their precise biological functions and the molecular mechanisms of gene regulation are not clearly understood. To understand such functions, we have developed a transgenic mouse model expressing a reporter gene (lacZ) under the control of approximately 6 kb upstream sequences of Dspp. The transgenic fusion protein was designed to reside within the cells to facilitate the precise identification of cell type and developmental stages at which the Dspp-lacZ gene is expressed. The results presented in this report demonstrate: (a) the 6 kb upstream sequences of Dspp have the necessary regulatory elements to direct the tissue specific expression of the transgene similar to endogenous Dspp, (b) both odontoblasts and ameloblasts exhibit transgene expression in a differentiation dependent manner, and (c) a differential regulation of the transgene in odontoblasts and ameloblasts occurs during tooth development and mineralization.  相似文献   
65.
Immunophilins are abundantly present in the brain as compared to the immune system. Immunophilin-binding agents like FK506 are known to inactivate neuronal nitric oxide synthase (nNOS) by inhibiting calcineurin and decrease the production of nitric oxide. Nitric oxide is involved in the mediation of nociception at the spinal level. In the present study, the effect of FK506 on the tail flick response in mice and the possible involvement of NO-L-arginine pathway in this paradigm was evaluated. FK506 (0.5, 1 and 3 mg/kg, ip) produced a significant antinociception in the tail flick test. Nitric oxide synthase (NOS) inhibitor L-NAME significantly and dose dependently (10-40 mg/kg, ip) potentiated the FK506 (0.5 mg/kg)-induced antinociception. On the other hand, NOS substrate L-arginine (100, 200 and 400 mg/kg) inhibited the FK506-induced antinociception in a dose-dependent manner. Concomitant administration of L-NAME (20 and 40 mg/kg) with L-arginine (200 mg/kg) blocked the inhibition exerted by L-arginine on the FK506-induced antinociception. Thus, it was concluded that NO- L-arginine pathway may be involved in the FK506-induced antinociception in tail flick test.  相似文献   
66.
67.
Plasma lipidome is now increasingly recognized as a potentially important marker of chronic diseases, but the exact extent of its contribution to the interindividual phenotypic variability in family studies is unknown. Here, we used the rich data from the ongoing San Antonio Family Heart Study (SAFHS) and developed a novel statistical approach to quantify the independent and additive value of the plasma lipidome in explaining metabolic syndrome (MS) variability in Mexican American families recruited in the SAFHS. Our analytical approach included two preprocessing steps: principal components analysis of the high-resolution plasma lipidomics data and construction of a subject-subject lipidomic similarity matrix. We then used the Sequential Oligogenic Linkage Analysis Routines software to model the complex family relationships, lipidomic similarities, and other important covariates in a variance components framework. Our results suggested that even after accounting for the shared genetic influences, indicators of lipemic status (total serum cholesterol, TGs, and HDL cholesterol), and obesity, the plasma lipidome independently explained 22% of variability in the homeostatic model of assessment-insulin resistance trait and 16% to 22% variability in glucose, insulin, and waist circumference. Our results demonstrate that plasma lipidomic studies can additively contribute to an understanding of the interindividual variability in MS.  相似文献   
68.

Phosphorus (P) is an essential macronutrient to all crops including rice and it plays a key role in various plant activities and development. Low availability of P in the soils negatively, influences rice crop growth and causes significant yield loss. In the present study, we characterized a set of 56 germplasm lines for their tolerance to low soil P by screening them at low soil P and optimum soil P levels along with low soil P tolerant and sensitive check varieties. These lines were genotyped for the presence/absence of tolerant allele with respect to the major low soil P tolerance QTL, Pup1, using a set of locus specific PCR-based markers, viz., K46-1, K46-2, K52 and K46CG-1. High genetic variability was observed for various traits associated with low soil P tolerance. The yield parameters from normal and low soil P conditions were used to calculate stress tolerance indices and classify the genotypes according to their tolerance level. Out of the total germplasm lines screened, 15 lines were found to be tolerant to low soil P condition based on the yield reduction in comparison to the tolerant check, but most of them harbored the complete or partial Pup1 locus. Interestingly, two tolerant germplasm lines, IC216831 and IC216903 were observed to be completely devoid of Pup1 and hence they can be explored for new loci underlying low soil P tolerance.

  相似文献   
69.
70.
Reoccurrence of infectious diseases and ability of pathogens to resist antibacterial action has raised enormous challenges which may possibly be confronted by nanotechnology routes. In the present study, uniformly embedded silver nanoparticles in orthorhombic nanotubes of lithium vanadium oxide (LiV2O5/Ag) were explored as an impeder of bacterial growth and biofilm. The LiV2O5/Ag nanocomposites have impeded growth of Gram-positive Bacillus subtilis NCIM 2063 and Gram-negative Escherichia coli NCIM 2931 at 60 to 120 μg/mL. It also impeded the biofilm in Pseudomonas aeruginosa NCIM 2948 at 12.5 to 25 μg/mL. Impedance in the growth and biofilm occurs primarily by direct action of the nanocomposites on the cell surfaces of test organisms as revealed by surface perturbation in scanning electron microscopy. As the metabolic growth and biofilm formation phenomena of pathogens play a central role in progression of pathogenesis, LiV2O5/Ag nanocomposite-based approach is likely to curb the menace of reoccurrence of infectious diseases. Thus, LiV2O5/Ag nanocomposites can be viewed as a promising candidate in biofabrication of biomedical materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号