首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10399篇
  免费   952篇
  国内免费   829篇
  12180篇
  2024年   33篇
  2023年   124篇
  2022年   314篇
  2021年   520篇
  2020年   334篇
  2019年   440篇
  2018年   436篇
  2017年   317篇
  2016年   443篇
  2015年   652篇
  2014年   807篇
  2013年   789篇
  2012年   982篇
  2011年   820篇
  2010年   518篇
  2009年   479篇
  2008年   447篇
  2007年   465篇
  2006年   401篇
  2005年   340篇
  2004年   263篇
  2003年   288篇
  2002年   255篇
  2001年   203篇
  2000年   193篇
  1999年   202篇
  1998年   112篇
  1997年   115篇
  1996年   113篇
  1995年   80篇
  1994年   86篇
  1993年   56篇
  1992年   84篇
  1991年   73篇
  1990年   63篇
  1989年   63篇
  1988年   48篇
  1987年   40篇
  1986年   19篇
  1985年   29篇
  1984年   13篇
  1983年   23篇
  1982年   14篇
  1981年   12篇
  1980年   7篇
  1979年   16篇
  1978年   7篇
  1976年   6篇
  1975年   5篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
C16 peptide and angiopoietin-1 (Ang-1) have been found to have anti-inflammatory activity in various inflammation-related diseases. However, their combined role in acute respiratory distress syndrome (ARDS) has not been investigated yet. The objective of this study was to investigate the effects of C16 peptide and Ang-1 in combination with lipopolysaccharide (LPS)-induced inflammatory insult in vitro and in vivo. Human pulmonary microvascular endothelial cells and human pulmonary alveolar epithelial cells were used as cell culture systems, and an ARDS rodent model was used for in vivo studies. Our results demonstrated that C16 and Ang-1 in combination significantly suppressed inflammatory cell transmigration by 33% in comparison with the vehicle alone, and decreased the lung tissue wet-to-dry lung weight ratio to a maximum of 1.53, compared to 3.55 in the vehicle group in ARDS rats. Moreover, C  +  A treatment reduced the histology injury score to 60% of the vehicle control, enhanced arterial oxygen saturation (SO2), decreased arterial carbon dioxide partial pressure (PCO2), and increased oxygen partial pressure (PO2) in ARDS rats, while also improving the survival rate from 47% (7/15) to 80% (12/15) and diminishing fibrosis, necrosis, and apoptosis in lung tissue. Furthermore, when C  +  A therapy was administered 4 h following LPS injection, the treatment showed significant alleviating effects on pulmonary inflammatory cell infiltration 24 h postinsult. In conclusion, our in vitro and in vivo studies show that C16 and Ang-1 exert protective effects against LPS-induced inflammatory insult. C16 and Ang-1 hold promise as a novel agent against LPS-induced ARDS. Further studies are needed to determine the potential for C16 and Ang-1 in combination in treating inflammatory lung diseases.  相似文献   
122.
Long-distance mobile mRNAs play key roles in gene regulatory networks that control plant development and stress tolerance. However, the mechanisms underlying species-specific delivery of mRNA still need to be elucidated. Here, the use of grafts involving highly heterozygous apple (Malus) genotypes allowed us to demonstrate that apple (Malus domestica) oligopeptide transporter3 (MdOPT3) mRNA can be transported over a long distance, from the leaf to the root, to regulate iron uptake; however, the mRNA of Arabidopsis (Arabidopsis thaliana) oligopeptide transporter 3 (AtOPT3), the MdOPT3 homolog from A. thaliana, does not move from shoot to root. Reciprocal heterologous expression of the two types of mRNAs showed that the immobile AtOPT3 became mobile and moved from the shoot to the root in two woody species, Malus and Populus, while the mobile MdOPT3 became immobile in two herbaceous species, A. thaliana and tomato (Solanum lycopersicum). Furthermore, we demonstrated that the different transmissibility of OPT3 in A. thaliana and Malus might be caused by divergence in RNA-binding proteins between herbaceous and woody plants. This study provides insights into mechanisms underlying differences in mRNA mobility and validates the important physiological functions associated with this process.

The long-distance movement of OPT3 is selective between herbaceous and woody plants as shown using Malus and Arabidopsis thaliana plants.  相似文献   
123.
124.
Shen  He  Wu  Shuyu  Chen  Xi  Xu  Bai  Ma  Dezun  Zhao  Yannan  Zhuang  Yan  Chen  Bing  Hou  Xianglin  Li  Jiayin  Cao  Yudong  Fu  Xianyong  Tan  Jun  Yin  Wen  Li  Juan  Meng  Li  Shi  Ya  Xiao  Zhifeng  Jiang  Xingjun  Dai  Jianwu 《中国科学:生命科学英文版》2020,63(12):1879-1886
Science China Life Sciences - Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we...  相似文献   
125.
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE.  相似文献   
126.
Li S  Zhu J  Fu H  Wan J  Hu Z  Liu S  Li J  Tie Y  Xing R  Zhu J  Sun Z  Zheng X 《Nucleic acids research》2012,40(2):884-891
microRNAs (miRNAs) are a versatile class of non-coding RNAs involved in regulation of various biological processes. miRNA-122 (miR-122) is specifically and abundantly expressed in human liver. In this study, we employed 3'-end biotinylated synthetic miR-122 to identify its targets based on affinity purification. Quantitative RT-PCR analysis of the affinity purified RNAs demonstrated a specific enrichment of several known miR-122 targets such as CAT-1 (also called SLC7A1), ADAM17 and BCL-w. Using microarray analysis of affinity purified RNAs, we also discovered many candidate target genes of miR-122. Among these candidates, we confirmed that protein kinase, interferon-inducible double-stranded RNA-dependent activator (PRKRA), a Dicer-interacting protein, is a direct target gene of miR-122. miRNA quantitative-RT-PCR results indicated that miR-122 and small interfering RNA against PRKRA may facilitate the accumulation of newly synthesized miRNAs but did not detectably affect endogenous miRNAs levels. Our findings will lead to further understanding of multiple functions of this hepato-specific miRNA. We conclude that miR-122 could repress PRKRA expression and facilitate accumulation of newly synthesized miRNAs.  相似文献   
127.
7-Chloro-4-nitrobenzofurazan (NBD-Cl) is a potent inhibitor of both types of monoamine oxidase (MAO). NBD-Cl competitively inhibited the oxidative deamination of kynuramine catalyzed by human placenta MAO-A, the oxidative deamination of benzylamine catalyzed by bovine liver MAO-B, the oxidative deamination of serotonin catalyzed by rat brain MAO-A, and the oxidative deamination of phenylethylamine catalyzed by rat brain MAO-B. In addition, a time-dependent inactivation of MAOs by NBD-Cl has been demonstrated upon incubation of the enzyme preparations with NBD-Cl at pH 9, but not at pH 7.5. The time-dependent inhibition of MAO by NBD-Cl could be prevented by the addition of 4-nitrophenyl azide, an active site-directed label of MAO, during incubation of the enzyme with NBD-Cl. On the basis of these findings, it is suggested that at pH 9, NBD-Cl modifies one (or more) essential lysine residue(s) in the active sites of the two types of MAO.  相似文献   
128.
The nitrogen regulatory circuit of Neurospora crassa consists of a set of unlinked structural genes which specify various nitrogen catabolic enzymes plus control genes and metabolic effectors which regulate their expression. The positive-acting nit-2 regulatory gene is required to turn on the expression of the nitrogen catabolic enzymes during conditions of nitrogen limitation. The complete nucleotide sequence of the nit-2 gene was determined. The nit-2 mRNA is 4.3 kilobases long and has a long nontranslated sequence at both its 5' and 3' ends. The nit-2 gene nucleotide sequence can be translated to yield a protein containing 1,036 amino acid residues with a molecular weight of approximately 110,000. Deletion analyses demonstrated that approximately 21% of the NIT2 protein at its carboxy terminus can be removed without loss of function. The nit-2 protein contains a single putative Cys2/Cys2 zinc finger domain which appears to function in DNA binding and which has striking homology to a mammalian trans-acting factor, GF-1.  相似文献   
129.
抗阿特拉津转基因大豆植株后代的遗传分析   总被引:9,自引:0,他引:9  
本试验用阿特拉津溶液涂抹、荧光诱导动力学检测、分子杂交等方法对抗阿特拉津转基因大豆植株的后代进行了鉴定,在第二代及第三代中检测到了抗性基因的存在,表明从龙葵中得到的此抗阿特拉津 psbA 基因不仅能导人大豆叶绿体基因组中获得表达,而且可以遗传到后代。  相似文献   
130.
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft‐L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O‐acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft‐L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft‐L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre‐treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号