首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   6篇
  国内免费   1篇
  120篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   15篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1993年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1947年   1篇
  1943年   2篇
  1932年   1篇
排序方式: 共有120条查询结果,搜索用时 0 毫秒
61.
Objective: To examine the association between birth weight and cognitive function in the normal population. Design: A longitudinal, population based, birth cohort study. Participants: 3900 males and females born in 1946. Main outcome measures: Cognitive function from childhood to middle life (measured at ages 8, 11, 15, 26, and 43 years). Results: Birth weight was significantly and positively associated with cognitive ability at age 8 (with an estimated standard deviation score of 0.44 (95% confidence interval 0.28 to 0.59)) between the lowest and highest birthweight categories after sex, father's social class, mother's education, and birth order were controlled for. This association was evident across the normal birthweight range (>2.5 kg) and so was not accounted for exclusively by low birth weight. The association was also observed at ages 11, 15, and 26, and weakly at age 43, although these associations were dependent on the association at age 8. Birth weight was also associated with education, with those of higher birth weight more likely to have achieved higher qualifications, and this effect was accounted for partly by cognitive function at age 8. Conclusions: Birth weight was associated with cognitive ability at age 8 in the general population, and in the normal birthweight range. The effect at this age largely explains associations between birth weight and cognitive function at subsequent ages. Similarly, the association between birth weight and education was accounted for partly by earlier cognitive scores.  相似文献   
62.
Postoperative peritoneal carcinomatosis is a significant clinical problem after “curative” resection of pancreatic carcinoma. Preoperative surgical trauma activates a cascade of peritoneal defense mechanisms responsible for postoperative intra-abdominal tumor recurrence. Reactive oxygen species (ROS) play a pivotal role in this postoperative inflammatory reaction. This study explores the influence of ROS on adhesion of human pancreatic carcinoma cells to human mesothelial cells. Furthermore this study explores the influence of ROS on the presentation of adhesion molecules on Panc-1 and mesothelial cells. ROS were produced using the enzymatic reaction of xanthine with xanthine oxidase (X/XO). A reproducible in vitro assay to study adhesion of human Panc-1 carcinoma tumor cells to a mesothelial cell monolayer of primary human mesothelial cells was used. Mesothelial monolayers were incubated with ROS produced prior to adhesion of the tumor cells. Incubation of the mesothelial cells with X/XO resulted in a significant increase (69.5%) in adhesion of Panc-1 in all patients. SOD/catalase, anti-oxidants, could reduce this increase by 56.7%. ROS significantly influenced the expression of the adhesion molecules ICAM-1, VCAM-1 and CD44h on mesothelial cells, but did not influence adhesion molecule expression on Panc-1. The ROS released during the post-operative inflammatory reaction may play an important role in the adhesion of pancreatic tumor cells to the mesothelium-possibly by influencing adhesion molecule expression on mesothelial cells. Therefore ROS can partly be responsible for the enhanced post-operative intra-abdominal tumor recurrence.Key words: reactive oxygen species, mesothelium, Panc-1  相似文献   
63.
64.
Spatiotemporal expression can be achieved by transport and translation of mRNAs at defined subcellular sites. An emerging mechanism mediating mRNA trafficking is microtubule-dependent co-transport on shuttling endosomes. Although progress has been made in identifying various components of the endosomal mRNA transport machinery, a mechanistic understanding of how these RNA-binding proteins are connected to endosomes is still lacking. Here, we demonstrate that a flexible MademoiseLLE (MLLE) domain platform within RNA-binding protein Rrm4 of Ustilago maydis is crucial for endosomal attachment. Our structure/function analysis uncovered three MLLE domains at the C-terminus of Rrm4 with a functionally defined hierarchy. MLLE3 recognises two PAM2-like sequences of the adaptor protein Upa1 and is essential for endosomal shuttling of Rrm4. MLLE1 and MLLE2 are most likely accessory domains exhibiting a variable binding mode for interaction with currently unknown partners. Thus, endosomal attachment of the mRNA transporter is orchestrated by a sophisticated MLLE domain binding platform.  相似文献   
65.
OBJECTIVE--To investigate socioeconomic variation among young women in the risk of hospital admission for diseases (including neoplasms) of the female genital system and breast and for the common surgical procedures of dilatation and curettage and hysterectomy. DESIGN--Large nationally representative cohort study with individual records of confirmed admissions to NHS and private hospitals since birth and data on occupational and educational experience. SETTING--England, Scotland, and Wales. PATIENTS--General population sample of 1628 women, 1549 of whom had a complete admissions record for the ages of 15-43 years. MAIN OUTCOME MEASURES--The percentage of women admitted for neoplasms or other diseases of the female genital system and breast or who had dilatation and curettage or hysterectomy between the ages of 15 and 43 years. RESULTS--By the age of 43, 35% of women had been admitted, 17% had undergone dilatation and curettage at least once, and 10% had had a hysterectomy. There were significant inverse educational gradients, the risk of admission increasing more than twofold between the most and least educated women. The differential risk was most striking for disorders of menstruation, in which only 1% of those with the highest educational qualifications and 19% of those with minimal qualifications had been admitted to hospital. There was a significant educational gradient in the hysterectomy rate (from 1% to 15%) and a twofold difference in the risk of dilatation and curettage. There were also significant gradients in risk of admission and of hysterectomy according to partner''s social class. CONCLUSIONS--Socioeconomic variations in the risk of dilatation and curettage and of hysterectomy were large. Lessening the socioeconomic gradient in risks of admissions and surgery for diseases of the female genital system and breast, particularly for menstrual disorders, could have important resource implications.  相似文献   
66.
Although it is recognized that risks of cardiovascular diseases associated with heart failure develop over the life course, no studies have reported whether life course socioeconomic inequalities exist for heart failure risk. The Medical Research Council’s National Survey of Health and Development was used to investigate associations between occupational socioeconomic position during childhood, early adulthood and middle age and measures of cardiac structure [left ventricular (LV) mass index and relative wall thickness (RWT)] and function [systolic: ejection fraction (EF) and midwall fractional shortening (mFS); diastolic: left atrial (LA) volume, E/A ratio and E/e’ ratio)]. Different life course models were compared with a saturated model to ascertain the nature of the relationship between socioeconomic position across the life course and each cardiac marker. Findings showed that models where socioeconomic position accumulated over multiple time points in life provided the best fit for 3 of the 7 cardiac markers: childhood and early adulthood periods for the E/A ratio and E/e’ ratio, and all three life periods for LV mass index. These associations were attenuated by adjustment for adiposity, but were little affected by adjustment for other established or novel cardio-metabolic risk factors. There was no evidence of a relationship between socioeconomic position at any time point and RWT, EF, mFS or LA volume index. In conclusion, socioeconomic position across multiple points of the lifecourse, particularly earlier in life, is an important determinant of some measures of LV structure and function. BMI may be an important mediator of these associations.  相似文献   
67.
68.
Variance component (VC) approaches based on restricted maximum likelihood (REML) have been used as an attractive method for positioning of quantitative trait loci (QTL). Linkage disequilibrium (LD) information can be easily implemented in the covariance structure among QTL effects (e.g. genotype relationship matrix) and mapping resolution appears to be high. Because of the use of LD information, the covariance structure becomes much richer and denser compared to the use of linkage information alone. This makes an average information (AI) REML algorithm based on mixed model equations and sparse matrix techniques less useful. In addition, (near-) singularity problems often occur with high marker densities, which is common in fine-mapping, causing numerical problems in AIREML based on mixed model equations. The present study investigates the direct use of the variance covariance matrix of all observations in AIREML for LD mapping with a general complex pedigree. The method presented is more efficient than the usual approach based on mixed model equations and robust to numerical problems caused by near-singularity due to closely linked markers. It is also feasible to fit multiple QTL simultaneously in the proposed method whereas this would drastically increase computing time when using mixed model equation-based methods.  相似文献   
69.
In a simulation study, different designs were compared for efficiency of fine-mapping of QTL. The variance component method for fine-mapping of QTL was used to estimate QTL position and variance components. The design of many families with small size gave a higher mapping resolution than a design with few families of large size. However, the difference is small in half sib designs. The proportion of replicates with the QTL positioned within 3 cM of the true position is 0.71 in the best design, and 0.68 in the worst design applied to 128 animals with a phenotypic record and a QTL explaining 25% of the phenotypic variance. The design of two half sib families each of size 64 was further investigated for a hypothetical population with effective size of 1000 simulated for 6000 generations with a marker density of 0.25 cM and with marker mutation rate 4 × 10-4 per generation. In mapping using bi-allelic markers, 42~55% of replicated simulations could position QTL within 0.75 cM of the true position whereas this was higher for multi allelic markers (48~76%). The accuracy was lowest (48%) when mutation age was 100 generations and increased to 68% and 76% for mutation ages of 200 and 500 generations, respectively, after which it was about 70% for mutation ages of 1000 generations and older. When effective size was linearly decreasing in the last 50 generations, the accuracy was decreased (56 to 70%). We show that half sib designs that have often been used for linkage mapping can have sufficient information for fine-mapping of QTL. It is suggested that the same design with the same animals for linkage mapping should be used for fine-mapping so gene mapping can be cost effective in livestock populations.  相似文献   
70.
When cells are stimulated to move, for instance during development, wound healing or angiogenesis, they undergo changes in the turnover of their cell-matrix adhesions. This is often accompanied by alterations in the expression profile of integrins—the extracellular matrix receptors that mediate anchorage within these adhesions. Here, we discuss how a shift in expression between two different types of integrins that bind fibronectin can have dramatic consequences for cell-matrix adhesion dynamics and cell motility.Key words: integrin, fibronectin, migration, cytoskeleton, dynamicsCells attach to the extracellular matrix (ECM) that surrounds them in specialized structures termed “cell-matrix adhesions.” These come in different flavors including “focal complexes” (small adhesions found in membrane protrusions of spreading and migrating cells), “focal adhesions” (larger adhesions connected by F-actin stress fibers that are derived from focal complexes in response to tension), “fibrillar adhesions” (elongated adhesions associated with fibronectin matrix assembly), and proteolytically active adhesions termed “podosomes” or “invadopodia” found in osteoclasts, macrophages and certain cancer cells. Common to all these structures is the local connection between ECM proteins outside- and the actin cytoskeleton within the cell through integrin transmembrane receptors. The intracellular linkage to filamentous actin is indirect through proteins that concentrate in cell-matrix adhesions such as talin, vinculin, tensin, parvins and others.1Cell migration is essential for embryonic development and a number of processes in the adult, including immune cell homing, wound healing, angiogenesis and cancer metastasis. In moving cells, cell-matrix adhesion turnover is spatiotemporally controlled.2 New adhesions are made in the front and disassembled in the rear of cells that move along a gradient of motogenic factors or ECM proteins. This balance between formation and breakdown of cell-matrix adhesions is important for optimal cell migration. Several mechanisms regulate the turnover of cell-matrix adhesions. Proteolytic cleavage of talin has been identified as an important step in cell-matrix adhesion disassembly3 and FAK and Src family kinases are required for cell-matrix adhesion turnover and efficient cell migration.4,5 Besides regulating phospho-tyrosine-mediated protein-protein interactions within cell-matrix adhesions, the FAK/Src complex mediates signaling downstream of integrins to Rho GTPases, thus controlling cytoskeletal organization.6,7 The transition from a stationary to a motile state could involve (local) activation of such mechanisms.Interestingly, conditions of increased cell migration (development, wound healing, angiogenesis, cancer metastasis) are accompanied by shifts in integrin expression with certain integrins being lost and others gained. Most ECM proteins can be recognized by various different integrins. For instance, the ECM protein, fibronectin (Fn) can be recognized by nine different types of integrins and most of these bind to the Arg-Gly-Asp (RGD) motif in the central cell-binding domain. Thus, cell-matrix adhesions formed on Fn contain a mixture of different integrins and shifts in expression from one class of Fn-binding integrins to another will alter the receptor composition of such adhesions. This may provide an alternative means to shift from stationary to motile.Indeed, we have found that the type of integrins used for binding to Fn strongly affects cell migration. We made use of cells deficient in certain Fn-binding integrins and either restored their expression or compensated for their absence by overexpression of alternative Fn-binding integrins. This allowed us to compare in a single cellular background cell-matrix adhesions containing α5β1 to those containing αvβ3. Despite the fact that these integrins support similar levels of adhesion to Fn, only α5β1 was found to promote a contractile, fibroblastic morphology with centripetal orientation of cell-matrix adhesions8 (Fig. 1). Moreover, RhoA activity is high in the presence of α5β1 and these cells move in a random fashion with a speed of around 25 mm/h. By contrast, in cells using αvβ3 instead, adhesions distribute across the ventral surface, RhoA activity is low, and these cells move with similar speed but in a highly persistent fashion.8,9 Finally, photobleaching experiments using GFP-vinculin and GFP-paxillin demonstrated that cell-matrix adhesions containing α5β1 are highly dynamic whereas adhesions containing αvβ3 are more static.9Open in a separate windowFigure 1Immunofluorescence images. GE11 cells, epithelial β1 knockout cells derived from mouse embryos chimeric for the integrin β1 subunit endogenously express various av integrins, including low levels of αvβ3 and αvβ5. Ectopic expression of β1 leads to expression of α5β1 and induced α5β1-mediated adhesion to Fn (left image) whereas ectopic expression of β3 (in the β1 null background) leads to strong expression of αvβ3 and induced αvβ3-mediated adhesion to Fn (right image). Adhesions containing either α5β1 or αvβ3 show distinct distribution and dynamics (paxillin; green) and cause different F-actin organization (phalloidin; red). Cartoons: Differences in cell-matrix adhesion dynamics may be explained by differential binding of soluble Fn molecules (blue) or different molecular determinants of the interaction with immobilized Fn (red). See text for details.It has been observed that α5β1 and αvβ3 use different recycling routes. Interfering with Rab4-mediated recycling of αvβ3 causes increased Rab11-mediated recycling of α5β1 to the cell surface. In agreement with our findings, the shift to α5β1 leads to increased Rho-ROCK activity and reduced persistence of migration.10 One possible explanation for the different types of migration promoted by these two Fn-binding integrins might involve different signaling and/or adaptor proteins interacting with specific amino acids in their cytoplasmic tails. However, this appears not to be the case: α5β1 in which the cytoplasmic tails of α5 or β1 are replaced by those of αv or β3, respectively, behaves identical to wild type α5β1: it promotes a fibroblast-like morphology with centripetal orientation of cell-matrix adhesions and it drives a non-persistent mode of migration.8,11 Together, these findings point to differences between α5β1 and αvβ3 integrins in the mechanics of their interaction with Fn, which apparently modulates intracellular signaling pathways in control of cell-matrix adhesion dynamics and cell migration.How might this work? It turns out that although α5β1 and αvβ3 similarly support cell adhesion to immobilized (stretched) Fn, only α5β1 efficiently binds soluble, folded (“inactive”) Fn.11 We have proposed that such interactions with soluble Fn molecules (possibly secreted by the cell itself) may weaken the interaction with the immobilized ligand thereby causing enhanced cell-matrix adhesion dynamics in the presence of α5β1,11 (Fig. 1). Preferential binding of soluble Fn by α5β1 could be explained by differences in accessibility of the RGD binding pocket between α5β1 (more exposed) and αvβ3 (more hidden) as suggested by others.12 If this is the case, immobilization (“stretching”) of Fn apparently leads to reorientation of the RGD motif in such a way that it is easily accessed by both integrins.The issue is considerably complicated by the fact that other recognition motifs are present in the Fn central cell-binding domain. In addition to the RGD sequence in the tenth Fn type 3 repeat (IIIFn10), binding of α5β1, but not αvβ3, also depends on the PHSRN “synergy” sequence in IIIFn9.1315 The relative contribution of these motifs is controversial and there is structural data pointing either towards a model in which IIIFn9 interacts with α5β1 or towards a model in which IIIFn9 exerts long-range electrostatic steering resulting in a higher affinity interaction without contacting the integrin.16,17 Cell adhesion studies have suggested that an interaction of α5β1 with the synergy region stabilizes the binding to RGD.14,18 Such a two-step interaction may facilitate binding to full length, folded Fn for instance by altering the tilt angle between IIIFn9 and IIIFn10 leading to optimal exposure of the RGD loop, perhaps explaining why αvβ3 (which may not interact with the synergy site) poorly binds soluble Fn.Others have shown that the RGD motif alone is sufficient for mechanical coupling of αvβ3 to Fn whereas the synergy region is required to provide mechanical strength to the α5β1-Fn bond.19 It appears that the interaction of α5β1 with Fn is particularly dynamic with various conformations of α5β1 interacting with different Fn binding surfaces, including the RGD and synergy sequences as well as other regions in IIIFn9. Thus, besides the above model based on differential binding to soluble Fn molecules, differences in the complexity and dynamics of interactions with immobilized Fn that determine functional binding strength could also underlie the different dynamics of cell-matrix adhesions containing either α5β1 or αvβ3 (Fig. 1).Precisely how mechanical differences in receptor-ligand interactions result in such remarkably distinct cellular responses is poorly understood. In addition to effects on cell-matrix adhesion dynamics and cytoskeletal organization it is also associated with different activities of Rho GTPases, indicating that mechanical differences between these two integrins must translate into differential activation of intracellular signaling pathways.8,9,11 Possibly, different adhesion dynamics due to distinct mechanisms of receptor-ligand interaction result in different patterns of F-actin organization, which, in turn, affects the formation of signaling platforms. It is also possible that differences in the extent of integrin clustering have an impact on the conformation of one or more cytoplasmic components of the cell-matrix adhesions containing either α5β1 or αvβ3. This could lead to hiding or exposing binding sites for signaling molecules (e.g., upstream regulators of Rho GTPases) or substrates. Whatever the mechanism involved, altering the integrin composition of cell-matrix adhesions through shifts in integrin expression as observed during development, angiogenesis, wound healing and cancer progression may be a driving force in the enhanced cell migration that characterizes those processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号