首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2017年   3篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1998年   2篇
  1993年   1篇
  1985年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有35条查询结果,搜索用时 296 毫秒
31.

Background  

A number of algorithms have been developed for calculating the quartet distance between two evolutionary trees on the same set of species. The quartet distance is the number of quartets – sub-trees induced by four leaves – that differs between the trees. Mostly, these algorithms are restricted to work on binary trees, but recently we have developed algorithms that work on trees of arbitrary degree.  相似文献   
32.
33.
34.
The interaction of quinone with luciferase from Photobacterium leiognathi was studied based on the fluorescence decay measurements of the endogenous flavin bound to the enzyme. Homologous 1,4-quinones, 1,4-benzoquinone, methyl-1,4-benzoquinone, 2-methyl-5-isopropyl-1,4-benzoquine and 1,4-naphthoquinone, were investigated. In the absence of quinone, the fluorescence intensity and anisotropy decays of the endogenous flavin exhibited two intensity decay lifetimes (~ 1 and 5 ns) and two anisotropy decay lifetimes (~ 0.2 and 20 ns), suggesting a heterogeneous quenching and a rotational mobility microenvironment of the active site of the luciferase, respectively. In the presence of quinone, the intensity decay heterogeneity was largely maintained, whereas the fraction of the short anisotropy decay component and the averaged rotational rate of FMN increased with the increasing hydrophobicity of the quinone. We hypothesize that the hydrophobicity of the quinone plays a role in the non-specific inhibition mechanism of xenobiotic molecules in the bacterial bioluminescence system via altering the rotational mobility of the endogenous flavin in the luciferase.  相似文献   
35.
Fullerenols are nanosized water-soluble polyhydroxylated derivatives of fullerenes, specific allotropic form of carbon, bioactive compounds and perspective pharmaceutical agents. Antioxidant activity of fullerenols was studied in model solutions of organic and inorganic toxicants of oxidative type – 1,4-benzoquinone and potassium ferricyanide. Two fullerenol preparations were tested: С60О2–4(ОН)20–24 and mixture of two types of fullerenols С60О2–4(ОН)20–2470О2–4(ОН)20–24. Bacteria-based and enzyme-based bioluminescent assays were used to evaluate a decrease in cellular and biochemical toxicities, respectively. Additionally, the enzyme-based assay was used for the direct monitoring of efficiency of the oxidative enzymatic processes. The bacteria-based and enzyme-based assays showed similar peculiarities of the detoxification processes: (1) ultralow concentrations of fullerenols were active (ca 10–17–10?4 and 10–17–10?5 g/L, respectively), (2) no monotonic dependence of detoxification efficiency on fullerenol concentrations was observed, and (3) detoxification of organic oxidizer solutions was more effective than that of the inorganic oxidizer. The antioxidant effect of highly diluted fullerenol solutions on bacterial cells was attributed to hormesis phenomenon; the detoxification was concerned with stimulation of adaptive cellular response under low-dose exposures. Sequence analysis of 16S ribosomal RNA was carried out; it did not reveal mutations in bacterial DNA. The suggestion was made that hydrophobic membrane-dependent processes are involved to the detoxifying mechanism. Catalytic activity of fullerenol (10?8 g/L) in NADH-dependent enzymatic reactions was demonstrated and supposed to contribute to adaptive bacterial response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号