首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1490篇
  免费   43篇
  1533篇
  2024年   2篇
  2022年   5篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   34篇
  2014年   57篇
  2013年   111篇
  2012年   75篇
  2011年   76篇
  2010年   51篇
  2009年   65篇
  2008年   100篇
  2007年   83篇
  2006年   107篇
  2005年   87篇
  2004年   92篇
  2003年   108篇
  2002年   125篇
  2001年   10篇
  2000年   13篇
  1999年   26篇
  1998年   34篇
  1997年   31篇
  1996年   14篇
  1995年   18篇
  1994年   24篇
  1993年   19篇
  1992年   11篇
  1991年   16篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1986年   7篇
  1985年   5篇
  1984年   13篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1972年   3篇
  1971年   2篇
  1969年   1篇
  1967年   1篇
  1964年   2篇
排序方式: 共有1533条查询结果,搜索用时 15 毫秒
21.
Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.  相似文献   
22.
Although inhaled steroids are the treatment of first choice to control asthma, administration of systemic steroids is required for treatment of asthmatic exacerbation and intractable asthma. To improve efficacy and reduce side effects, we examine the effects of betamethasone disodium phosphate (BP) encapsulated in biocompatible, biodegradable blended nanoparticles (stealth nanosteroids) on a murine model of asthma. These stealth nanosteroids were found to accumulate at the site of airway inflammation and exhibit anti-inflammatory activity. Significant decreases in BALF eosinophil number were maintained for 7 days with a single injection of nanosteroids containing 40 μg BP. Airway responsiveness was also attenuated by the injection of stealth nanosteroids. A single injection of 40 μg of free BP and 8 μg of free BP once daily for 5 days did not show any significant effects. We conclude that stealth nanosteroids achieve prolonged and higher benefits at the site of airway inflammation compared to free steroids.  相似文献   
23.
The effects of indomethacin (IDM) and aspirin (ASA) on ACh (10 microM) -stimulated exocytotic events were studied in guinea pig antral mucous cells by using video optical microscopy. IDM or ASA, which inhibits cyclooxygenase (COX), decreased the frequency of ACh-stimulated exocytotic events by 30% or 60%, respectively. The extent of inhibition induced by ASA (60%) decreased by 30% when IDM or arachidonic acid (AA, the substrate of COX) was added. IDM, unlike ASA, appears to induce the accumulation of AA, which enhances the frequency of ACh-stimulated exocytotic events in ASA-treated cells. ONO-8713 (100 microM; an inhibitor of the EP1-EP4 prostaglandin receptors) and N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, HCl (H-89, 20 microM; an inhibitor of PKA) also decreased the frequency of ACh-stimulated exocytotic events by 60%. However, the supplementation of PGE(2) (1 microM) prevented the IDM-induced decrease in the frequency of ACh-stimulated exocytotic events. SC-560 (an inhibitor of COX-1) decreased the frequency of ACh-stimulated exocytotic events by 30%, but NS-398 (an inhibitor of COX-2) did not. Moreover, IDM decreased the frequency of exocytotic events stimulated by ionomycin, suggesting that COX-1 activity is stimulated by an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). ACh and ionomycin increased PGE(2) release in antral mucosal cells. In conclusion, in ACh-stimulated antral mucous cells, an increase in [Ca(2+)](i) activates Ca(2+)-regulated exocytotic events and PGE(2) release mediated by COX-1. The released PGE(2) induces the accumulation of cAMP, which enhances the Ca(2+)-regulated exocytosis. The autocrine mechanism mediated by PGE(2) maintains the high-level mucin release from antral mucous cells during ACh stimulation.  相似文献   
24.
It has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos. However, permeability coefficients of aquaporin-3 to cryoprotectants have not been determined except for glycerol. In addition, permeability coefficients under concentration gradients are important for developing and improving cryopreservation protocols. In this study, we examined the permeability of aquaporin-3 to various cryoprotectants using Xenopus oocytes. The permeability of aquaporin-3 to cryoprotectants was measured by the volume change of aquaporin-3 cRNA-injected oocytes in modified Barth's solution containing either 10% glycerol, 8% ethylene glycol, 10% propylene glycol, 1.5 M acetamide, or 9.5% DMSO (1.51-1.83 Osm/kg) at 25 degrees C. Permeability coefficients of aquaporin-3 for ethylene glycol and propylene glycol were 33.50 and 31.45 x 10(-3) cm/min, respectively, which were as high as the value for glycerol (36.13 x 10(-3) cm/min). These values were much higher than those for water-injected control oocytes (0.04-0.11 x 10(-3) cm/min). On the other hand, the coefficients for acetamide and DMSO were not well determined because the volume data were poorly fitted by the two parameter model, possibly because of membrane damage. To avoid this, the permeability for these cryoprotectants was measured under a low concentration gradient by suspending oocytes in aqueous solutions containing low concentrations of acetamide or DMSO dissolved in water (0.20 Osm/kg). The coefficient for acetamide (24.60 x 10(-3) cm/min) was as high as the coefficients for glycerol, ethylene glycol, and propylene glycol, and was significantly higher than the value for control (6.50 x 10(-3) cm/min). The value for DMSO (6.33 x 10(-3) cm/min) was relatively low, although higher than the value for control (0.79 x 10(-3) cm/min). This is the first reported observation of DMSO transport by aquaporin-3.  相似文献   
25.
26.
The basic biology of blood vascular endothelial cells has been well documented. However, little is known about that of lymphatic endothelial cells, despite their importance under normal and pathological conditions. The lack of a lymphatic endothelial cell line has hampered progress in this field. The objective of this study has been to establish and characterize lymphatic and venous endothelial cell lines derived from newly developed tsA58/EGFP transgenic rats harboring the temperature-sensitive simian virus 40 (SV40) large T-antigen and enhanced green fluorescent protein (EGFP). Endothelial cells were isolated from the transgenic rats by intraluminal enzymatic digestion. The cloned cell lines were named TR-LE (temperature-sensitive rat lymphatic endothelial cells from thoracic duct) and TR-BE (temperature-sensitive rat blood-vessel endothelial cells from inferior vena cava), respectively, and cultured on fibronectin-coated dishes in HuMedia-EG2 supplemented with 20% fetal bovine serum and Endothelial Mitogen at a permissive temperature, 33°C. A temperature shift to 37°C resulted in a decrease in proliferation with degradation of the large T-antigen and cleavage of poly (ADP-ribose) polymerase. TR-LE cells expressed lymphatic endothelial markers VEGFR-3 (vascular endothelial growth factor receptor), LYVE-1 (a lymphatic endothelial receptor), Prox-1 (a homeobox gene product), and podoplanin (a glomerular podocyte membrane mucoprotein), together with endothelial markers CD31, Tie-2, and VEGFR-2, whereas TR-BE cells expressed CD31, Tie-2, and VEGFR-2, but no lymphatic endothelial markers. Thus, these conditionally immortalized and EGFP-expressing lymphatic and vascular endothelial cell lines might represent an important tool for the study of endothelial cell functions in vitro.M. Matsuo and K. Koizumi contributed equally to this work. This study was supported in part by Grants-in-Aid for the 21st Century COE Program and for CLUSTER (Cooperative Link of Unique Science and Technology for Economy Revitalization) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.  相似文献   
27.
Circadian rhythm is a self-sustaining oscillation whose period length coincides with the 24-hour day-night cycle. A powerful tool for circadian clock research is the real-time automated bioluminescence monitoring system in which a promoter region of a clock-controlled gene is fused to a luciferase reporter gene and rhythmic regulation of the promoter activity is monitored as bioluminescence. In the present study, we greatly improved the bioluminescence reporter system in the cyanobacterium Synechocystis sp. strain PCC 6803. We fused an 805-bp promoter region of the dnaK gene seamlessly to the luxA coding sequence and integrated the P(dnaK)::luxAB fusion gene into a specific intergenic region of the Synechocystis genome (targeting site 1). The resulting new reporter strain, PdnaK::luxAB(-), showed 12 times the bioluminescence intensity of the standard reporter strain, CFC2. Furthermore, we generated strain PdnaK::luxAB(+), in which the P(dnaK)::luxAB fusion gene and the selection-marker spectinomycin resistance gene are transcribed in opposite directions. The PdnaK::luxAB(+) strain showed 19 times the bioluminescence intensity of strain CFC2. The procedures used to increase the bioluminescence intensity are especially useful for bioluminescence monitoring of genes with low promoter activity. In addition, these reporter constructs facilitate bioluminescence monitoring of any gene because the promoter fragments they contain can easily be replaced by digestion with unique restriction enzymes. They would therefore contribute to a genome-wide analysis of gene expression in Synechocystis.  相似文献   
28.

Background

Heparan sulfate (HS) is present on the surface of virtually all mammalian cells and is a major component of the extracellular matrix (ECM), where it plays a pivotal role in cell-cell and cell-matrix cross-talk through its large interactome. Disruption of HS biosynthesis in mice results in neonatal death as a consequence of malformed lungs, indicating that HS is crucial for airway morphogenesis. Neonatal mortality (~50%) in newborns with congenital diaphragmatic hernia (CDH) is principally associated with lung hypoplasia and pulmonary hypertension. Given the importance of HS for lung morphogenesis, we investigated developmental changes in HS structure in normal and hypoplastic lungs using the nitrofen rat model of CDH and semi-synthetic bacteriophage ('phage) display antibodies, which identify distinct HS structures.

Results

The pulmonary pattern of elaborated HS structures is developmentally regulated. For example, the HS4E4V epitope is highly expressed in sub-epithelial mesenchyme of E15.5 - E17.5 lungs and at a lower level in more distal mesenchyme. However, by E19.5, this epitope is expressed similarly throughout the lung mesenchyme. We also reveal abnormalities in HS fine structure and spatiotemporal distribution of HS epitopes in hypoplastic CDH lungs. These changes involve structures recognised by key growth factors, FGF2 and FGF9. For example, the EV3C3V epitope, which was abnormally distributed in the mesenchyme of hypoplastic lungs, is recognised by FGF2.

Conclusions

The observed spatiotemporal changes in HS structure during normal lung development will likely reflect altered activities of many HS-binding proteins regulating lung morphogenesis. Abnormalities in HS structure and distribution in hypoplastic lungs can be expected to perturb HS:protein interactions, ECM microenvironments and crucial epithelial-mesenchyme communication, which may contribute to lung dysmorphogenesis. Indeed, a number of epitopes correlate with structures recognised by FGFs, suggesting a functional consequence of the observed changes in HS in these lungs. These results identify a novel, significant molecular defect in hypoplastic lungs and reveals HS as a potential contributor to hypoplastic lung development in CDH. Finally, these results afford the prospect that HS-mimetic therapeutics could repair defective signalling in hypoplastic lungs, improve lung growth, and reduce CDH mortality.  相似文献   
29.
In several vascular inflammatory reactions (i.e. immunity and thrombosis) inflammatory mediators lead to the activation of vascular endothelial cells (EC). To date, a number of functional molecules induced on the surface of activated-EC have been identified. We report here that Globotetraosylceramide (Gb4), a glycosphingolipid expressed in EC, is a novel inducible molecule on EC activated by TNF-α. The cell surface expression of Gb4 is increased in a time-dependent manner under TNF-α stimulation, which shows distinct expression kinetics of major proteins induced by TNF-α on EC. MALDI-TOF-MS analysis revealed that the enhanced Gb4 predominantly contains C24:0 fatty acid in the ceramide moiety. Isolated caveolae/lipid raft-enriched detergent insoluble membrane domains in activated-EC predominantly contain this molecular species of Gb4. Gb4 containing C16:0 fatty acid in the ceramide moiety, which is known to constitute the major species of Gb4 in plasma, is also found as a major molecular species in EC. These observations indicate that Gb4, especially with very long fatty acid, is enhanced in EC during its inflammatory reaction, and suggest the potential utility of Gb4 as a biomarker for monitoring inflammation status of EC involving its related diseases.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号