排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture 总被引:1,自引:0,他引:1
Kubis HP Hanke N Scheibe RJ Meissner JD Gros G 《American journal of physiology. Cell physiology》2003,285(1):C56-C63
The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is 150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration. muscle plasticity; NFATc1; resting calcium concentration 相似文献
12.
Immunochemical evidence for a unique GPI-anchored carbonic anhydrase isozyme in human cardiomyocytes
Knüppel-Ruppert AS Gros G Harringer W Kubis HP 《American journal of physiology. Heart and circulatory physiology》2000,278(4):H1335-H1344
To clarify the controversial question of cell-specific distribution of carbonic anhydrase (CA) in the heart, endothelial cells and cardiomyocytes were isolated from porcine and human hearts and were characterized with cell-specific markers. CA activity was found in the microsomal fraction of both cell types. It was shown by Triton X-114 phase separation that both cell types possess a membrane-bound form of CA. These CAs share the same mechanism of membrane-anchoring via glycosylphosphatidylinositol (GPI), which excludes identity with transmembrane isoforms CA IX or CA XII. Western blotting analysis of human microsomes with anti-human CA IV antibodies revealed a marked difference in immunoreactivity. Endothelial CA activity resulted in 11-fold stronger CA IV bands compared with identical amounts of myocytic CA activity, indicating that cardiac endothelium and cardiomyocytes possess immunologically distinct forms of CA. We conclude that in human hearts CA IV is associated with the endothelium, whereas most of the CA in myocytes is not identical with one of the known CA isozymes. This suggests that cardiomyocytic CA is a novel isozyme. 相似文献
13.
Nanowire Interconnects for Printed Large‐Area Semitransparent Organic Photovoltaic Modules 下载免费PDF全文
Fei Guo Peter Kubis Thomas Przybilla Erdmann Spiecker Andre Hollmann Stefan Langner Karen Forberich Christoph J. Brabec 《Liver Transplantation》2015,5(12)
Semitransparent organic photovoltaic (OPV) cells promise applications in various transparent architectures where their opaque counterparts cannot contribute. Realizing practical applications of this technology requires the manufacturing of large‐area modules without significant performance loss compared to the lab‐scale devices. In this work, efficient semitransparent OPV modules based on ultrafast laser patterning on both glass and flexible substrates are reported. Solution‐processed metallic silver nanowires (AgNWs) are used as transparent top electrodes. The efficient low‐ohmic contact of the interconnects between the top AgNWs and the bottom electrode in combination with high‐precision laser beam positioning system allow to fabricate semitransparent modules with high electrical fill factor of ≈63% and a remarkable geometric fill factor exceeding 95%, respectively. These results represent an important progress toward upscaling of high‐performance OPV modules with reduced production costs. 相似文献
14.
Hanke N Meissner JD Scheibe RJ Endeward V Gros G Kubis HP 《Biochimica et biophysica acta》2008,1783(5):813-825
We have investigated the mechanism of the changes in the profile of metabolic enzyme expression that occur in association with fast-to-slow transformation of rabbit skeletal muscle. The hypotheses assessed are: do 1) lowered intracellular ATP concentration or 2) reduction of the muscular glycogen stores act as triggers of metabolic transformation? We find that 3 days of decreased cytosolic ATP content have no impact on the investigated metabolic markers, whereas incubation of the cells with little or no glucose leads to decreases in glycogen in conjunction with decreases in glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter activity, GAPDH mRNA and specific GAPDH enzyme activity (indicators of the anaerobic glycolytic pathway), and furthermore to increases in mitochondrial acetoacetyl-CoA thiolase (MAT, also known as ACAT) promoter activity, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) expression and citrate synthase (CS) specific enzyme activity (all indicators of oxidative metabolic pathways). The AMP-activated protein kinase (AMPK) activity under these conditions is reduced compared to controls. In experiments with two inhibitors of glycogen degradation we show that the observed metabolic transformation caused by low glucose takes place even if intracellular glycogen content is high. These findings for the first time provide evidence that metabolic adaptation of skeletal muscle cells from rabbit in primary culture can be induced not only by elevation of intracellular calcium concentration or by a rise of AMPK activity, but also by reduction of glucose supply. Contrary to expectations, neither an increase in phospho-AMPK nor a reduction of muscular glycogen content are crucial events in the glucose-dependent induction of metabolic transformation in the muscle cell culture system studied. 相似文献
15.
Fei Guo Xiangdong Zhu Karen Forberich Johannes Krantz Tobias Stubhan Michael Salinas Marcus Halik Stefanie Spallek Benjamin Butz Erdmann Spiecker Tayebeh Ameri Ning Li Peter Kubis Dirk M. Guldi Gebhard J. Matt Christoph J. Brabec 《Liver Transplantation》2013,3(8):1062-1067
Organic photovoltaic (OPV) solar cells that can be simply processed from solution are in the focus of the academic and industrial community because of their enormous potential to reduce cost. One big challenge in developing a fully solution‐processed OPV technology is the design of a well‐performing electrode system, allowing the replacement of ITO. Several solution‐processed electrode systems were already discussed, but none of them could match the performance of ITO. Here, we report efficient ITO‐free and fully solution‐processed semitransparent inverted organic solar cells based on silver nanowire (AgNW) electrodes. To demonstrate the potential of these AgNW electrodes, they were employed as both the bottom and top electrodes. Record devices achieved fill factors as high as 63.0%, which is comparable to ITO based reference devices. These results provide important progress for fully printed organic solar cells and indicate that ITO‐free, transparent as well as non‐transparent organic solar cells can indeed be fully solution‐processed without losses. 相似文献
16.
17.
18.
19.
Bédard J Kubis S Bimanadham S Jarvis P 《The Journal of biological chemistry》2007,282(29):21404-21414
Tic40 is a component of the protein import apparatus of the inner envelope of chloroplasts, but its role in the import mechanism has not been clearly defined. The C terminus of Tic40 shares weak similarity with the C-terminal Sti1 domains of the mammalian Hsp70-interacting protein (Hip) and Hsp70/Hsp90-organizing protein (Hop) co-chaperones. Additionally, Tic40 may possess a tetratricopeptide repeat (TPR) protein-protein interaction domain, another characteristic feature of Hip/Hop co-chaperones. To investigate the functional importance of different parts of the Tic40 protein and to determine whether the homology between Tic40 and co-chaperones is functionally significant, different Tic40 deletion and Tic40:Hip fusion constructs were generated and assessed for complementation activity in the Arabidopsis Tic40 knock-out mutant, tic40. Interestingly, all Tic40 deletion constructs failed to complement tic40, indicating that each part removed is essential for Tic40 function; these included a construct lacking the Sti1-like domain (DeltaSti1), a second lacking a central region, including the putative TPR domain (DeltaTPR), and a third lacking the predicted transmembrane anchor region. Moreover, the DeltaSti1 and DeltaTPR constructs caused strong dominant-negative, albino phenotypes in tic40 transformants, indicating that the truncated Tic40 proteins interfere with the residual chloroplast protein import that occurs in tic40 plants. Remarkably, the Tic40:Hip fusion constructs showed that the Sti1 domain of human Hip is functionally equivalent to the Sti1-like region of Tic40, strongly suggesting a co-chaperone role for the Tic40 protein. Supporting this notion, yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated the in vivo interaction of Tic40 with Tic110, a protein believed to recruit stromal chaperones to protein import sites. 相似文献
20.
The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution 总被引:3,自引:0,他引:3