首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1173篇
  免费   102篇
  国内免费   90篇
  1365篇
  2023年   17篇
  2022年   27篇
  2021年   52篇
  2020年   36篇
  2019年   39篇
  2018年   37篇
  2017年   33篇
  2016年   44篇
  2015年   67篇
  2014年   62篇
  2013年   75篇
  2012年   96篇
  2011年   91篇
  2010年   39篇
  2009年   52篇
  2008年   52篇
  2007年   41篇
  2006年   60篇
  2005年   35篇
  2004年   21篇
  2003年   28篇
  2002年   34篇
  2001年   32篇
  2000年   29篇
  1999年   17篇
  1998年   19篇
  1997年   40篇
  1996年   34篇
  1995年   21篇
  1994年   15篇
  1993年   21篇
  1992年   18篇
  1991年   8篇
  1990年   3篇
  1989年   10篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1975年   1篇
  1966年   1篇
  1965年   1篇
  1946年   2篇
排序方式: 共有1365条查询结果,搜索用时 0 毫秒
41.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   
42.
Substantial evidence indicates that immune activation at stroma can be rerouted in a tumor-promoting direction. CD69 is an immunoregulatory molecule expressed by early-activated leukocytes at sites of chronic inflammation, and CD69(+) T cells have been found to promote human tumor progression. In this study, we showed that, upon encountering autologous CD69(+) T cells, tumor macrophages (MΦs) acquired the ability to produce much greater amounts of IDO protein in cancer nests. The T cells isolated from the hepatocellular carcinoma tissues expressed significantly more CD69 molecules than did those on paired circulating and nontumor-infiltrating T cells; these tumor-derived CD69(+) T cells could induce considerable IDO in monocytes. Interestingly, the tumor-associated monocytes/MΦs isolated from hepatocellular carcinoma tissues or generated by in vitro culture effectively activated circulating T cells to express CD69. IL-12 derived from tumor MΦs was required for early T cell activation and subsequent IDO expression. Moreover, we found that conditioned medium from IDO(+) MΦs effectively suppressed T cell responses in vitro, an effect that could be reversed by adding extrinsic IDO substrate tryptophan or by pretreating MΦs with an IDO inhibitor 1-methyl-DL-tryptophan. These data revealed a fine-tuned collaborative action between different types of immune cells to counteract T cell responses in tumor microenvironment. Such an active induction of immune tolerance should be considered for the rational design of effective immune-based anticancer therapies.  相似文献   
43.
44.
The helicase superfamily 2 (SF2) proteins are involved in essentially every step in DNA and RNA metabolism. The radD (yejH) gene, which belongs to SF2, plays an important role in DNA repair. The RadD protein includes all seven conserved SF2 motifs and has shown ATPase activity. Here, we first reported the structure of RadD from Escherichia coli containing two RecA-like domains, a zinc finger motif, and a C-terminal domain. Based on the structure of RadD and other SF2 proteins, we then built a model of the RedD-ATP complex.  相似文献   
45.
We previously reported that immunodepletion of Greatwall kinase prevents Xenopus egg extracts from entering or maintaining M phase due to the accumulation of inhibitory phosphorylations on Thr14 and Tyr15 of Cdc2. M phase-promoting factor (MPF) in turn activates Greatwall, implying that Greatwall participates in an MPF autoregulatory loop. We show here that activated Greatwall both accelerates the mitotic G2/M transition in cycling egg extracts and induces meiotic maturation in G2-arrested Xenopus oocytes in the absence of progesterone. Activated Greatwall can induce phosphorylations of Cdc25 in the absence of the activity of Cdc2, Plx1 (Xenopus Polo-like kinase) or mitogen-activated protein kinase, or in the presence of an activator of protein kinase A that normally blocks mitotic entry. The effects of active Greatwall mimic in many respects those associated with addition of the phosphatase inhibitor okadaic acid (OA); moreover, OA allows cycling extracts to enter M phase in the absence of Greatwall. Taken together, these findings support a model in which Greatwall negatively regulates a crucial phosphatase that inhibits Cdc25 activation and M phase induction.  相似文献   
46.
The effects of high salinity (0-400 mmol/L NaCl) on photosystem II (PSII) photochemistry and photosynthetic pigment composition were investigated in the halophyte Artimisia anethifolia grown under outdoor conditions and exposed to full sunlight. High salinity resulted in an inhibition in plant growth and a significant accumulation of sodium and chloride in leaves. However, high salinity induced no effects on the actual PSII efficiency, the efficiency of excitation energy capture by open PSII reaction centres, photochemical quenching, and non-photochemical quenching at midday. High salinity also induced neither changes in the maximum efficiency of PSII photochemistry, the efficiency with which a trapped exciton can move an electron into the electron transport chain further than QA and the quantum yield of electron transport beyond QA, nor changes in absorption, trapping and electron transport fluxes per PSII reaction centre. No significant changes were observed in the levels of neoxanthin, lutein, beta-carotene, violaxanthin, antheraxanthin, and zeaxanthin expressed on a total chlorophyll basis in salt-adapted plants. Our results suggest that Artimisia anethifolia showed high resistance not only to high salinity, but also to photoinhibition even if it was treated with high salinity as high as 400 mmol/L NaCl and exposed to full sunlight. The results indicate that tolerance of PSII to high salinity and photoinhibition can be viewed as an important strategy for Artimisia anethifolia, a halophyte plant, to grow in very high saline soil.  相似文献   
47.
The structural aspects in the interaction of phosphatidylglycerol (PG) with photosystem II (PSIl), mainly the effect of PQ on conformation and microenvironment of tyrosine residues of PSIl proteins were studied by Fourier transform infrared (FTIR) spectroscopy. It was found that the binding of PG to PSIl particle induces changes in the conformation and micropolarity of phenol ring in the tyrosine residues. In other words, the PG effect on the PSIl results in blue shift of the stretch vibrational band in the phenol ring from 1620 to 1500 cm-1 with the enhancement of the absorb-ance intensity. Additionally, a new spectrum of hydrogen bond was also observed. The results imply that the hydrogen-bond formation between the OH group of phenol and one of PG might cause changes in the structures of tyrosine residues in PSIl proteins.  相似文献   
48.
49.
Contact-based sequence alignment   总被引:2,自引:1,他引:1  
This paper introduces the novel method of contact-based protein sequence alignment, where structural information in the form of contact mutation probabilities is incorporated into an alignment routine using contact-mutation matrices (CAO: Contact Accepted mutatiOn). The contact-based alignment routine optimizes the score of matched contacts, which involves four (two per contact) instead of two residues per match in pairwise alignments. The first contact refers to a real side-chain contact in a template sequence with known structure, and the second contact is the equivalent putative contact of a homologous query sequence with unknown structure. An algorithm has been devised to perform a pairwise sequence alignment based on contact information. The contact scores were combined with PAM-type (Point Accepted Mutation) substitution scores after parameterization of gap penalties and score weights by means of a genetic algorithm. We show that owing to the structural information contained in the CAO matrices, significantly improved alignments of distantly related sequences can be obtained. This has allowed us to annotate eight putative Drosophila IGF sequences. Contact-based sequence alignment should therefore prove useful in comparative modelling and fold recognition.  相似文献   
50.
In corneal endothelium, there is evidence for basolateral entry of HCO(3)(-) into corneal endothelial cells via Na(+)-HCO(3)(-) cotransporter (NBC) proteins and for net HCO(3)(-) flux from the basolateral to the apical side. However, how HCO(3)(-) exits the cells through the apical membrane is unclear. We determined that cultured corneal endothelial cells transport HCO(3)(-) similarly to fresh tissue. In addition, Cl(-) channel inhibitors decreased fluid transport by at most 16%, and inhibition of membrane-bound carbonic anhydrase IV by benzolamide or dextran-bound sulfonamide decreased fluid transport by at most 29%. Therefore, more than half of the fluid transport cannot be accounted for by anion transport through apical Cl(-) channels, CO(2) diffusion across the apical membrane, or a combination of these two mechanisms. However, immunocytochemistry using optical sectioning by confocal microscopy and cryosections revealed the presence of NBC transporters in both the basolateral and apical cell membranes of cultured bovine corneal endothelial cells and freshly isolated rabbit endothelia. This newly detected presence of an apical NBC transporter is consistent with its being the missing mechanism sought. We discuss discrepancies with other reports and provide a model that accounts for the experimental observations by assuming different stoichiometries of the NBC transport proteins at the basolateral and apical sides of the cells. Such functional differences might arise either from the expression of different isoforms or from regulatory factors affecting the stoichiometry of a single isoform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号