首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   54篇
  国内免费   34篇
  2023年   11篇
  2022年   18篇
  2021年   21篇
  2020年   16篇
  2019年   21篇
  2018年   23篇
  2017年   12篇
  2016年   25篇
  2015年   30篇
  2014年   39篇
  2013年   39篇
  2012年   36篇
  2011年   42篇
  2010年   26篇
  2009年   22篇
  2008年   33篇
  2007年   24篇
  2006年   22篇
  2005年   14篇
  2004年   16篇
  2003年   20篇
  2002年   16篇
  2001年   12篇
  2000年   4篇
  1999年   8篇
  1998年   11篇
  1996年   4篇
  1995年   2篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   7篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1951年   2篇
  1950年   2篇
排序方式: 共有619条查询结果,搜索用时 15 毫秒
61.
Huwentoxin-XI purified from the Chinese bird spider Ornithoctonus huwena is a toxin with both antiprotease activity and potassium channel blocking activity. To determine its solution structure, huwentoxin-XI was expressed in a yeast eukaryotic expression system and studied by NMR. The ^15N labeling strategy was used to facilitate the process of resonance assignments. The nearly complete sequence-specific assignments of proton and nitrogen resonances were obtained by analyzing a series of two-dimensional (2D) and three-dimensional (3D) spectra, including DQF-COSY, TOCSY, NOESY, ^15N-^1H HSQC, ^15N-^1H HNHA, ^15N-^1H HNHB, ^15N-^1H TOCSY-HSQC and ^15N-^1H NOESY-HSQC spectra. Secondary structure analysis of huwentoxin-XI showed that it mainly contains an N-terminal 310-helix from Thr3 to Arg5 and a C-terminal α-helix from Gln45 to Cys52, plus a triple-stranded antiparallel β-sheet of Glu18-Asn23, Thr26-Ile31 and Asn40-Lys41. These studies provide a solid basis for the final structure determination of huwentoxin-XI.  相似文献   
62.
We analyzed 10 isobaric tags for relative and absolute quantitation (iTRAQ) experiments using three different model organisms across the domains of life: Saccharomyces cerevisiae KAY446, Sulfolobussolfataricus P2, and Synechocystis sp. PCC6803. A double database search strategy was employed to minimize the rate of false positives to less than 3% for all organisms. The reliability of proteins with single-peptide identification was also assessed using the search strategy, coupled with multiple analyses of samples into LC-MS/MS. The outcomes of the three LC-MS/MS analyses provided higher proteome coverage with an average increment in total proteins identified of 6%, 33%, and 50% found in S. cerevisiae, S. solfataricus, and Synechocystis sp., respectively. The iTRAQ quantification values were found to be highly reproducible across the injections, with an average coefficient of variation (CV) of 0.09 (scattering from 0.14 to 0.04) calculated based on log mean average ratio for all three organisms. Hence, we recommend multiple analyses of iTRAQ samples for greater proteome coverage and precise quantification.  相似文献   
63.
Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.  相似文献   
64.
Enteroviruses (Picornaviridae family) are a common cause of human illness worldwide and are associated with diverse clinical syndromes, including asymptomatic infection, respiratory illness, gastroenteritis, and meningitis. In this study, we report the identification and complete genome sequence of a novel enterovirus isolated from a case of acute respiratory illness in a Nicaraguan child. Unbiased deep sequencing of nucleic acids from a nose and throat swab sample enabled rapid recovery of the full-genome sequence. Phylogenetic analysis revealed that human enterovirus 109 (EV109) is most closely related to serotypes of human enterovirus species C (HEV-C) in all genomic regions except the 5′ untranslated region (5′ UTR). Bootstrap analysis indicates that the 5′ UTR of EV109 is likely the product of an interspecies recombination event between ancestral members of the HEV-A and HEV-C groups. Overall, the EV109 coding region shares 67 to 72% nucleotide sequence identity with its nearest relatives. EV109 isolates were detected in 5/310 (1.6%) of nose and throat swab samples collected from children in a pediatric cohort study of influenza-like illness in Managua, Nicaragua, between June 2007 and June 2008. Further experimentation is required to more fully characterize the pathogenic role, disease associations, and global distribution of EV109.The genus Enterovirus (EV) in the family Picornaviridae is a group of related viruses that are associated with a spectrum of disease, ranging from subclinical infections to acute respiratory and gastrointestinal illness to more severe manifestations, such as aseptic meningitis, encephalitis, and acute flaccid paralysis (16, 32). Enteroviruses are small, nonenveloped viruses that share a genomic organization. The RNA genome is a ∼7.5 kb single-stranded, positive-sense, polyadenylated molecule, with a single, long open reading frame flanked by 5′ and 3′ untranslated regions (UTRs). The 5′ UTR is ∼700 nucleotides in length and contains highly structured secondary elements with internal ribosomal entry site (IRES) function. The ∼2,200-amino-acid (aa) polyprotein is cotranslationally processed by viral proteases to yield structural (VP4, VP2, VP3, and VP1) and nonstructural (2A, 2B, 2C, 3A, 3B, 3C, and 3D) proteins (32). Current enterovirus classification is based on the high sequence divergence within the VP1 capsid region, which has been shown to correspond with serotype neutralization (27, 28). Human enterovirus (HEV) types are currently classified into four species, human enterovirus A (HEV-A), HEV-B, HEV-C (including poliovirus), and HEV-D, based on the four phylogenetic clusters observed in comparisons of the coding region sequences. An enterovirus is considered a new type within a species if it possesses <75% nucleotide identity and <85% amino acid identity with known members across the VP1 sequence (27, 30). Molecular identification methods play a crucial role in rapid, sensitive enterovirus diagnostics and have led to the recent discovery of several novel enteroviruses (29, 31, 40, 42, 44). Most approaches target a limited number of conserved regions in the 5′ UTR and VP4-VP2 junction or seek to ascertain serotype information by probing antigenic regions, such as VP1 (5).Picornavirus RNA-dependent RNA polymerases are highly error prone and lack proofreading ability, resulting in a misincorporation frequency of 1 per 103 to 104 nucleotides (48). The relative infidelity of these polymerases is believed to enable rapid adaptability under selective pressure. Large-impact evolutionary events, such as recombination within and between enterovirus serotypes, also contribute to their evolution and genetic diversity (3, 8, 26, 39) and may lead to changes in disease associations with human enterovirus infections. Human enteroviruses are classified into four species based on coding region sequence phylogeny, and intraspecies recombination events between enteroviruses that are closely related in the coding region are well documented (26, 38, 39). All known enterovirus 5′ UTR sequences, however, cluster into two groups containing either HEV-A and -B sequences or HEV-C and -D sequences. Recent findings have described enterovirus genomes with a coding region that clusters with one species and a 5′ UTR that clusters with a different species, suggesting possible interspecies recombination events (41, 44). Understanding the recombination-driven evolution of HEV-C viruses is of particular public health concern due to the viruses'' ability to recombine with vaccine poliovirus, resulting in circulating, highly neurovirulent vaccine-derived polioviruses (17, 21, 34). It is unclear whether recombination events between poliovirus and HEV-C viruses allow for the rapid acquisition of traits that increase pathogenic and circulation potential.The enterovirus pathogenicity spectrum is related to tissue tropism and is largely determined by cellular receptor usage. Most picornaviruses use receptors from the immunoglobulin superfamily of proteins, such as intracellular adhesion molecule-1 (ICAM-1) or coxsackievirus-adenovirus receptor (CAR) (36). A distinct subgroup of HEV-C viruses, which includes coxsackievirus (CAV) A1, A19, and A22 and enterovirus 104, has not yet been grown successfully in cell culture, and the receptor molecule for this subgroup is unknown (6). HEV-C viruses are believed to be the ancestral source of poliovirus, which resulted from a capsid mutation that caused a cellular receptor switch from ICAM-1 to CD155 (poliovirus receptor [PVR]) (17).In this study, we report the discovery and characterization of a novel human enterovirus type within species HEV-C, for which we propose the designation human enterovirus 109 (EV109). Sequence analysis reveals considerable nucleotide divergence in the 5′ UTR between EV109 and other HEV-C types, and scanning bootstrap analysis supports the hypothesis that EV109 is the product of an interspecies recombination event with an ancestral member of the HEV-A group. Viral capsid amino acid alignments and homology modeling reveal the predicted three-dimensional arrangement of divergent and conserved residues of EV109 compared with other related enteroviruses. We also report highly similar EV109 isolates within multiple cases of acute pediatric respiratory illness in Managua, Nicaragua.  相似文献   
65.
TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an ∼ 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats—39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep—were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to α-helix (PEVT, CEEEI, DispRep) and β-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable α-helix-like structures coils in aqueous solution and negligible heptad-based, α-helical coiled-coils. The α-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable α-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.  相似文献   
66.
The richness of proline sequences in titins qualifies these giant proteins as the largest source of intrinsically disordered structures in nature. An extensive search and analysis for Src homology domain 3 (SH3) ligand motifs revealed a myriad of broadly distributed SH3 ligand motifs, with the highest density in the PEVK segments of human titin. Besides the canonical class I and II motifs with opposite orientations, novel overlapping motifs consisting of one or more of each canonical motif are abundant. Experimentally, the binding affinity and critical residues of these putative titin-based SH3 ligands toward nebulin SH3 and other SH3-containing proteins in muscle and non-muscle cell extracts were validated with peptide array technology and by the sarcomere distribution of SH3-containing proteins. A 28-mer overlapping motif-containing PEVK module binds to nebulin SH3 in and around the canonical cleft, especially to the acidic residues in the loops, as revealed by NMR titration. Molecular dynamics and molecular docking studies indicated that the overlapping motif can bind in opposite orientations with comparable energy and contact areas and predicts correctly orientation-specific contacts in NMR data. We propose that the overlap ligand motifs are a new class of ligands with innate ability to dictate SH3 domain orientation and to facilitate the rate, strength, and stereospecificity of receptor interactions. Proline-rich sequences of titins are candidates as major hubs of SH3-dependent signaling pathways. The interplay of elasticity and dense clustering of mixed receptor orientations in titin PEVK segment have important implications for the mechanical sensing, force sensitivity, and inter-adapter interactions in signaling pathways.  相似文献   
67.
Wang KH  Majewska A  Schummers J  Farley B  Hu C  Sur M  Tonegawa S 《Cell》2006,126(2):389-402
Cortical representations of visual information are modified by an animal's visual experience. To investigate the mechanisms in mice, we replaced the coding part of the neural activity-regulated immediate early gene Arc with a GFP gene and repeatedly monitored visual experience-induced GFP expression in adult primary visual cortex by in vivo two-photon microscopy. In Arc-positive GFP heterozygous mice, the pattern of GFP-positive cells exhibited orientation specificity. Daily presentations of the same stimulus led to the reactivation of a progressively smaller population with greater reactivation reliability. This adaptation process was not affected by the lack of Arc in GFP homozygous mice. However, the number of GFP-positive cells with low orientation specificity was greater, and the average spike tuning curve was broader in the adult homozygous compared to heterozygous or wild-type mice. These results suggest a physiological function of Arc in enhancing the overall orientation specificity of visual cortical neurons during the post-eye-opening life of an animal.  相似文献   
68.

Background  

We recently described a mini-intein in the PRP8 gene of a strain of the basidiomycete Cryptococcus neoformans, an important fungal pathogen of humans. This was the second described intein in the nuclear genome of any eukaryote; the first nuclear encoded intein was found in the VMA gene of several saccharomycete yeasts. The evolution of eukaryote inteins is not well understood. In this report we describe additional PRP8 inteins (bringing the total of these to over 20). We compare and contrast the phylogenetic distribution and evolutionary history of the PRP8 intein and the saccharomycete VMA intein, in order to derive a broader understanding of eukaryote intein evolution. It has been suggested that eukaryote inteins undergo horizontal transfer and the present analysis explores this proposal.  相似文献   
69.
Zhang Y  Shi K  Wen J  Fan G  Chai Y  Hong Z 《Chirality》2012,24(3):239-244
Tetrahydroberberine (THB), a racemic mixture of (+)‐ and (?)‐enantiomer, is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). A chiral high performance liquid chromatography method has been developed for the determination of THB enantiomers in rat plasma. The enantioseparation was carried out on a Chiral®‐AD column using methanol:ethanol (80:20, v/v) as the mobile phase at the flow rate 0.4 ml/min. The ultraviolet detection was set at 230 nm. The calibration curves were linear over the range of 0.01–2.5 μg/ml for (+)‐THB and 0.01‐5.0 μg/ml for (?)‐THB, respectively. The lower limit of quantification was 0.01 μg/ml for both (+)‐THB and (?)‐THB. The stereoselective pharmacokinetics of THB enantiomers in rats was studied after oral and intravenous administration at a dose of 50 and 10 mg/kg racemic THB (rac‐THB). The mean plasma levels of (?)‐THB were higher at almost all time points than those of (+)‐THB. (?)‐THB also exhibited greater Cmax, and AUC0–∞, smaller CL and Vd, than its antipode. The (?)/(+)‐enantiomer ratio of AUC0–∞ after oral and intravenous administration were 2.17 and 1.43, respectively. These results indicated substantial stereoselectivity in the pharmacokinetics of THB enantiomers in rats. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
70.
Kuan PF  Chiang DY 《Biometrics》2012,68(3):774-783
Summary DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above‐mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71 , 393–424) and propose modeling the nonnull using a nonparametric symmetric distribution in two‐sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号