全文获取类型
收费全文 | 22263篇 |
免费 | 1979篇 |
国内免费 | 2588篇 |
专业分类
26830篇 |
出版年
2024年 | 61篇 |
2023年 | 221篇 |
2022年 | 557篇 |
2021年 | 890篇 |
2020年 | 762篇 |
2019年 | 902篇 |
2018年 | 862篇 |
2017年 | 709篇 |
2016年 | 829篇 |
2015年 | 1298篇 |
2014年 | 1636篇 |
2013年 | 1773篇 |
2012年 | 2121篇 |
2011年 | 1973篇 |
2010年 | 1316篇 |
2009年 | 1164篇 |
2008年 | 1534篇 |
2007年 | 1295篇 |
2006年 | 1195篇 |
2005年 | 994篇 |
2004年 | 981篇 |
2003年 | 905篇 |
2002年 | 811篇 |
2001年 | 369篇 |
2000年 | 268篇 |
1999年 | 217篇 |
1998年 | 219篇 |
1997年 | 133篇 |
1996年 | 131篇 |
1995年 | 131篇 |
1994年 | 94篇 |
1993年 | 77篇 |
1992年 | 64篇 |
1991年 | 46篇 |
1990年 | 31篇 |
1989年 | 44篇 |
1988年 | 28篇 |
1987年 | 27篇 |
1986年 | 28篇 |
1985年 | 25篇 |
1984年 | 7篇 |
1983年 | 10篇 |
1982年 | 18篇 |
1981年 | 5篇 |
1977年 | 5篇 |
1969年 | 4篇 |
1967年 | 4篇 |
1965年 | 4篇 |
1963年 | 3篇 |
1962年 | 4篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Yijing Chu Chengzhan Zhu Qianqian Wang Meixin Liu Wei Wan Jun Zhou Rendong Han Jing Yang Wenqiang Luo Chong Liu Huansheng Zhou Min Li Fengsheng Yu Yuanhua Ye 《Journal of cellular and molecular medicine》2021,25(9):4434-4443
Our previous studies have shown that the Adipose-derived mesenchymal stem cells (ADSCs) can regulate metastasis and development of ovarian cancer. However, its specific mechanism has yet to be fully revealed. In this study, an RNA-seq approach was adopted to compare the differences in mRNA levels in ovarian cancer cells being given or not given ADSCs. The mRNA level of paired box 8 (PAX8) changed significantly and was confirmed as an important factor in tumour-inducing effect of ADSCs. In comparison with the ovarian cancer cells cultured in the common growth medium, those cultured in the medium supplemented with ADSCs showed a significant increase of the PAX8 level. Moreover, the cancer cell growth could be restricted, even in the ADSC-treated group (P < .05), by inhibiting PAX8. In addition, an overexpression of PAX8 could elevate the proliferation of ovarian cancer cells. Moreover, Co-IP assays in ovarian cancer cells revealed that an interaction existed between endogenous PAX8 and TAZ. And the PAX8 levels regulated the degradation of TAZ. The bioluminescence images captured in vivo manifested that the proliferation and the PAX8 expression level in ovarian cancers increased in the ADMSC-treated group, and the effect of ADSCs in promoting tumours was weakened through inhibiting PAX8. Our findings indicate that the PAX8 expression increment could contribute a role in promoting the ADSC-induced ovarian cancer cell proliferation through TAZ stability regulation. 相似文献
992.
Wuquan Li Wentao Zhang Jun Liu Yalong Han He Jiang Gang Ji Wenjun Liu 《Bioscience reports》2021,41(1)
Excessive pulmonary inflammatory response is critical in the development of acute lung injury (ALI). Previously, microRNAs (miRNAs) have been recognized as an important regulator of inflammation in various diseases. However, the effects and mechanisms of miRNAs on inflammatory response in ALI remain unclear. Herein, we tried to screen miRNAs in the processes of ALI and elucidate the potential mechanism. Using a microarray assay, microRNA let-7e (let-7e) was chose as our target for its reported suppressive roles in several inflammatory diseases. Down-regulation of let-7e by antagomiR-let-7e injection attenuated LPS-induced acute lung injury. We also found that antagomiR-let-7e could obviously improve the survival rate in ALI mice. Moreover, antagomiR-let-7e treatment reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) of LPS-induced ALI mice. Luciferase reporter assays confirmed that suppressor of cytokine signaling 1 (SOCS1), a powerful attenuator of nuclear factor kappa B (NF-κB) signaling pathway, was directly targeted and suppressed by let-7e in RAW264.7 cells. In addition, it was further observed that SOCS1 was down-regulated, and inversely correlated with let-7e expression levels in lung tissues of ALI mice. Finally, down-regulation of let-7e suppressed the activation of NF-κB pathway, as evidenced by the reduction of p-IκBα, and nuclear p-p65 expressions in ALI mice. Collectively, our findings indicate that let-7e antagomir protects mice against LPS-induced lung injury via repressing the pulmonary inflammation though regulation of SOCS1/NF-κB pathway, and let-7e may act as a potential therapeutic target for ALI. 相似文献
993.
994.
Yanchun Li Xin Wang Zhihui Huang Yi Zhou Jun Xia Wanye Hu Xu Wang Jing Du Xiangmin Tong Ying Wang 《Cell death & disease》2021,12(9)
Ferroptosis, a new form of programmed cell death, not only promotes the pathological process of various human diseases, but also regulates cancer progression. Current perspectives on the underlying mechanisms remain largely unknown. Herein, we report a member of the NEET protein family, CISD3, exerts a regulatory role in cancer progression and ferroptosis both in vivo and in vitro. Pan-cancer analysis from TCGA reveals that expression of CISD3 is generally elevated in various human cancers which are consequently associated with a higher hazard ratio and poorer overall survival. Moreover, knockdown of CISD3 significantly accelerates lipid peroxidation and accentuates free iron accumulation triggered by Xc– inhibition or cystine-deprivation, thus causing ferroptotic cell death. Conversely, ectopic expression of the shRNA-resistant form of CISD3 (CISD3res) efficiently ameliorates the ferroptotic cell death. Mechanistically, CISD3 depletion presents a metabolic reprogramming toward glutaminolysis, which is required for the fuel of mitochondrial oxidative phosphorylation. Both the inhibitors of glutaminolysis and the ETC process were capable of blocking the lipid peroxidation and ferroptotic cell death in the shCISD3 cells. Besides, genetic and pharmacological activation of mitophagy can rescue the CISD3 knockdown-induced ferroptosis by eliminating the damaged mitochondria. Noteworthily, GPX4 acts downstream of CISD3 mediated ferroptosis, which fails to reverse the homeostasis of mitochondria. Collectively, the present work provides novel insights into the regulatory role of CISD3 in ferroptotic cell death and presents a potential target for advanced antitumor activity through ferroptosis.Subject terms: Oncogenes, Preclinical research 相似文献
995.
Liran Hiersch Joel G. Ray Jon Barrett Howard Berger Michael Geary Sarah D. McDonald Christina Diong Sima Gandhi Jun Guan Beth Murray-Davis Nir Melamed 《CMAJ》2021,193(37):E1448
Background:People whose singleton pregnancy is affected by hypertensive disorders of pregnancy (HDP) are at risk of future cardiovascular disease. It is unclear, however, whether this association can be extrapolated to twin pregnancies. We aimed to compare the association between HDP and future cardiovascular disease after twin and singleton pregnancies.Methods:We conducted a population-based retrospective cohort study that included nulliparous people in Ontario, Canada, 1992–2017. We compared the future risk of cardiovascular disease among pregnant people from the following 4 groups: those who delivered a singleton without HDP (referent) and with HDP, and those who delivered twins either with or without HDP.Results:The populations of the 4 groups were as follows: 1 431 651 pregnant people in the singleton birth without HDP group; 98 631 singleton birth with HDP; 21 046 twin birth without HDP; and 4283 twin birth with HDP. The median duration of follow-up was 13 (interquartile range 7–20) years. The incidence rate of cardiovascular disease was lowest among those with a singleton or twin birth without HDP (0.72 and 0.74 per 1000 person-years, respectively). Compared with people with a singleton birth without HDP, the risk of cardiovascular disease was highest among those with a singleton birth and HDP (1.47 per 1000 person-years; adjusted hazard ratio [HR] 1.81 [95% confidence interval (CI) 1.72–1.90]), followed by people with a twin pregnancy and HDP (1.07 per 1000 person-years; adjusted HR 1.36 [95% CI 1.04–1.77]). The risk of the primary outcome after a twin pregnancy with HDP was lower than that after a singleton pregnancy with HDP (adjusted HR 0.74 [95% CI 0.57–0.97]), when compared directly.Interpretation:In a twin pregnancy, HDP are weaker risk factors for postpartum cardiovascular disease than in a singleton pregnancy.Cardiovascular disease has been shown to be the leading cause of death among women.1–3 Classic risk factors for cardiovascular disease include obesity, diabetes mellitus, hypertension and family history of cardiovascular disease. 3 More recently, an association has been established between a history of hypertensive disorders of pregnancy (HDP) — gestational hypertension and pre-eclampsia — and future risk of cardiovascular disease.1,4–11 Consequently, some recommend using a history of HDP for cardiovascular disease risk stratification in women.3,12The leading hypothesis for the pathogenesis of HDP is that it results from abnormal placentation due to impaired trophoblast invasion,13–16 resulting in reduced placental perfusion.17–19 This, in turn, leads to abnormal secretion of the angiogenic factors soluble FMS-like tyrosine kinase 1 (sFlt1) and soluble endoglin (sEng),20 which induce endothelial dysfunction and the clinical manifestations of HDP.19,21–24 The mechanisms underlying the association between HDP and future cardiovascular disease are under debate.25 One hypothesis is that HDP are merely a marker of underlying subclinical or clinical vascular risk factors that predispose a person to both HDP and future cardiovascular disease.A person who is pregnant with twins is at about 3–4 times higher risk of HDP than a person with a singleton pregnancy,26–33 with rates of 14% and 5%, respectively.34 The higher risk of HDP in twin pregnancies may be due to higher circulating sFlt1 and sEng owing to greater placental mass in twin pregnancies, 35–37 and less related to the classic vascular risk factors for HDP in a singleton pregnancy. Therefore, a logical question is whether the established higher risk of future cardiovascular disease after singleton pregnancies with HDP also occurs in twin pregnancies with HDP. Limited data are available to answer this question.38 In the current study, we aimed to test the hypothesis that the association between HDP and future cardiovascular disease is less pronounced in twin versus singleton pregnancies. 相似文献
996.
Takayuki Murata Satoshi Komoto Satoko Iwahori Jun Sasaki Hironori Nishitsuji Terumitsu Hasebe Kiyotaka Hoshinaga Yukio Yuzawa 《Microbiology and immunology》2021,65(1):10-16
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global coronavirus disease 2019 (COVID-19) pandemic. Because complete elimination of SARS-CoV-2 appears difficult, decreasing the risk of transmission is important. Treatment with 0.1 and 0.05 ppm ozone gas for 10 and 20 hr, respectively, decreased SARS-CoV-2 infectivity by about 95%. The magnitude of the effect was dependent on humidity. Treatment with 1 and 2 mg/L ozone water for 10 s reduced SARS-CoV-2 infectivity by about 2 and 3 logs, respectively. Our results suggest that low-dose ozone, in the form of gas and water, is effective against SARS-CoV-2. 相似文献
997.
998.
Chung-Wei Chiang Wen-Chi Shu Jun Wan Beth A. Weaver Meyer B. Jackson 《The Journal of general physiology》2021,153(5)
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process. 相似文献
999.
Wei Li Jun Hyun Jeong Hee Geon Park Young Ran Lee Meng Li Sang Ki Lee 《Journal of Exercise Nutrition & Biochemistry》2014,18(1):105-110
[Purpose]
This study investigated the effect of endurance exercise on neointimal formation, endothelial-dependant relaxation and FOXO expression in balloon-induced carotid arteries of rats.[Methods]
Male SD(Sprague-Dawley) rats of 8 weeks ages were randomly divided into 3 groups; Sham-operated control (SO, n=10), Balloon-induced control (BIC, n=10), and Balloon-induced exercise (BIE, n=10). Endurance exercise training was performed on treadmill (18 m/min, 0% grade, 60 min/day, 5 days/week, 4 weeks).[Results]
Body weight is significantly reduced in BIE compared with BIC. Neointiaml formation in BIC was significantly higher than SO, but it was significantly recovered in BIE compared with BIC. Endothelial-dependent relaxation in BIC was significantly lower than SO, but it was significantly recovered in BIE compared with BIC and expression of FOXO1 and FOXO3a also were significantly increased BIE compared with BIC.[Conclusion]
These data suggest that endurance exercise inhibits neointimal formation and endothelial-dependent relaxation via FOXO expression in balloon-induce atherosclerosis rat model. 相似文献1000.
Hui Wang Changqing Lu Qing Li Jun Xie Tongbing Chen Yan Tan Changping Wu Jingting Jiang 《Molecules and cells》2014,37(11):812-818
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1. 相似文献