首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1416篇
  免费   108篇
  国内免费   5篇
  2021年   26篇
  2020年   22篇
  2019年   18篇
  2018年   38篇
  2017年   32篇
  2016年   50篇
  2015年   66篇
  2014年   75篇
  2013年   96篇
  2012年   104篇
  2011年   89篇
  2010年   57篇
  2009年   39篇
  2008年   57篇
  2007年   56篇
  2006年   52篇
  2005年   46篇
  2004年   31篇
  2003年   29篇
  2002年   33篇
  2001年   29篇
  2000年   30篇
  1999年   19篇
  1998年   18篇
  1997年   9篇
  1995年   10篇
  1994年   15篇
  1993年   12篇
  1992年   16篇
  1991年   24篇
  1990年   16篇
  1989年   14篇
  1988年   19篇
  1987年   30篇
  1986年   21篇
  1985年   26篇
  1984年   17篇
  1983年   12篇
  1982年   15篇
  1981年   9篇
  1980年   10篇
  1979年   13篇
  1978年   9篇
  1976年   8篇
  1974年   9篇
  1973年   14篇
  1972年   8篇
  1971年   8篇
  1970年   10篇
  1968年   8篇
排序方式: 共有1529条查询结果,搜索用时 31 毫秒
31.
Dai Z  Ku M  Edwards GE 《Plant physiology》1995,107(3):815-825
The effect of O2 on photosynthesis was determined in maize (Zea mays) leaves at different developmental stages. The optimum level of O2 for maximum photosynthetic rates was lower in young and senescing tissues (2-5 kPa) than in mature tissue (9 kPa). Inhibition of photosynthesis by suboptimal levels of O2 may be due to a requirement for functional mitochondria or to cyclic/pseudocyclic photophosphorylation in chloroplasts; inhibition by supraoptimal levels of O2 is considered to be due to photorespiration. Analysis of a range of developmental stages (along the leaf blade and at different leaf ages and positions) showed that the degree of inhibition of photosynthesis by supraoptimal levels of O2 increased rapidly once the ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll contents were below a critical level and was similar to that of C3 plants. Tissue having a high sensitivity of photosynthesis to O2 may be less effective in concentrating CO2 in the bundle sheath cells due either to limited function of the C4 cycle or to higher bundle sheath conductance to CO2. An analysis based on the kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase was used to predict the maximum CO2 level concentrated in bundle sheath cells at a given degree of inhibition of photosynthesis by supraoptimal levels of O2.  相似文献   
32.
Summary In the production of L-cysteine from D,L-ATC stability of the relevant enzymes produced byPseudomonas sp. was tested, and strategies to improve the stability of L-ATC hydrolase were investigated in view of water activity and ionic strength. Among the three enzymes which participate in L-cysteine production, i.e., ATC racemase, L-ATC hydrolase, and S-carbamyl-L-cysteine hydrolase, L-ATC hydrolase is the least stable. Various mixtures of salts and sorbitol were added to adjust the water activities of the tested solutions. As water activity decreased from 0.93 to 0.80, the stability of L-ATC hydrolase was sharply enhanced. In the absence of sorbitol the stability of L-ATC hydrolase increased in proportion to ionic strength. Even though enzyme stability was not good at a low ionic strength, it was enhanced by lowering water activity with addition of sorbitol. The half life of L-ATC hydrolase in sorbitol-salt mixtures increased by tenfold to twentyfold compared to that of a control.  相似文献   
33.
A temperature increase from 35° to 40–42°C enhances the rise of cytoplasmic serine proteinase (ISP1) activity in Bacillus megaterium incubated in a sporulation medium. A temperature shift from 27°C in the growth medium to 35°C in the sporulation medium has the same effect. Elevated temperature stimulates the increase of ISP1 level when applied immediately after the transfer of cells from the growth to the sporulation medium (at T0) or at T3, when sporulation becomes irreversible. The cytoplasmic PMSF-resistant activity or the proteolytic activity associated with the membrane fraction is stimulated only slightly or not at all. A temperature increase to 45–47°C suppresses the rise of proteolytic activities in all cell fractions. In addition to the elevation of the ISP1 activity by an upward temperature shift, the rise of this enzyme in nongrowing cells is also stimulated by osmotic stress. In growing populations, in contrast to the rise of the ISP1 activity caused by elevated temperature in nongrowing cells, this proteinase is induced by low temperatures (24–27°C). The ISP1 activity roughly correlates with the enzyme protein concentration determined by immunoblotting.  相似文献   
34.
David D. Ku 《Life sciences》1982,30(3):277-284
The effects of chronic reserpine pretreatment (0.1 mg/kg/day, 7–9 days) on myocardial sodium pump activity, the binding of 3H-ouabain to Na+, K+-ATPase, and the positive inotropic effect of ouabain were studied in guinea pig hearts. Ouabain-sensitive 86Rb uptake, an estimate of sodium pump activity, was significantly decreased (33.0%) in papillary muscles of chronic reserpine-pretreated guinea pigs as compared to the saline-treated controls. Kinetic analyses of the interaction of 3H-ouabain with Na+, K+-ATPase indicated that chronic reserpine pretreatment resulted in a significant decrease (24.3%) in the maximum 3H-ouabain binding site concentration when the results were expressed as pmoles per mg protein. The maximum 3H-ouabain binding sites or the number of Na+, K+-ATPase units, however, were not significantly different between the two groups when they were expressed as pmoles per mg DNA. The affinity or the dissociation rate constant (Kd) of 3H-ouabain binding was not altered after chronic reserpine pretreatment. In isolated, electrically-driven left atrial preparations, the basal contractile force was slightly higher in the reserpine-pretreated animals; the subsequent development of the positive inotropic effect and the concentration of ouabain needed to produce half-maximal inotropic response, however, were not different from the controls. Thus, it is concluded that chronic reserpine pretreatment is accompanied by a significant reduction in myocardial sodium pump activity; however, the number of sodium pump sites per cell was unchanged. The sensitivity of the reserpine-pretreated myocardium to the inotropic action of ouabain as well as its affinity for 3H-ouabain binding in vitro are also unchanged.  相似文献   
35.
S. B. Ku  G. E. Edwards 《Planta》1980,147(4):277-282
In the C4 plant, Amaranthus graecizans, increasing [O2] from 2% up to 100% inhibited photosynthesis, quantum yield, and the carboxylation efficiency, and increased the CO2 compensation point () from 2 to about 12 l/l. The O2 inhibition of photosynthesis was fully reversible. When changing from 2.5 to 40% O2 and vice versa, about 1 h was required for full equilibration with an O2 inhibition of 18%; whereas in wheat, a C3 species, inhibition of photosynthesis and its reversal occurs within minutes after changing [O2], resulting in 63% inhibition of photosynthesis by 45% O2. These differences in O2 inhibition between a C4 and C3 species can be explained by high diffusive resistance across bundle-sheath cells of C4 plants and the increased CO2/O2 ratio in bundle-sheath cells which is the consequence of the C4 cycle. In A. graecizans, increased with increasing [O2] but tended to reach a maximum at relatively high O2 levels. The lack of a linear increase in as previously observed for C3 species indicates that a considerable amount of photorespired CO2 may be re-fixed with increasing levels of O2. In comparison to previous reports with other C4 species, photosynthesis of A. graecizans shows greater sensitivity to O2, with a noticeable inhibition occurring with shifts from 2 to 21% O2. A. graecizans has characteristics of other C4 species with respect to Kranz anatomy, localization of PEP carboxylase in mesophyll cells and RuBP carboxylase in bundle-sheath cells, and little fractionation among carbon isotopes during CO2 fixation. The basis for the higher sensitivity of photosynthesis of A. graecizans to O2 may be based upon a lower diffusive resistance of gases across bundle-sheath cells than in some other C4 species.Abbreviations CE carboxylation efficiency - RuBP ribulose-1,5-bisphosphate - CO2 compensation point  相似文献   
36.
A new type of flow bioreactor designed to remove nitrate from water was developed. Denitrification activity of native Paracoccus denitrificans cells was used, the cells being separated from the refined medium by a semipermeable membrane. Relationships between the degree of nitrate conversion and the denitrification rate, on the one hand, and the volume flow rate and the amount of biomass, on the other, together with the results concerning denitrification during closed-circuit recirculation of the medium are discussed.  相似文献   
37.
Rats immunized with type II collagen (CII) develop an immunologically mediated polyarthritis. T cells have been implicated in the pathogenesis of this model since they can adoptively transfer the disease. A CII-specific T cell line (VA), consisting of three distinct clones by Southern blot analysis, has been shown to be arthritogenic. Antibodies specific for this line were generated by immunizing rabbits. In an attempt to prevent collagen-induced arthritis (CIA), Louvain rats were injected with 1 ml of anti-VA ip on Days -1, +1, +3 and 0.5 ml on Day +5 (early treatment). To evaluate its effect on existing disease, rats received anti-VA on the day of arthritis onset and subsequently on 4 successive alternate days using the same dosage protocol (late treatment). Control rats received no therapeutic injections or were administered normal rabbit serum. All rats were immunized with CII on Day 0 to induce CIA. Rats administered antibodies using the early anti-VA treatment protocol had a significantly diminished incidence of arthritis compared to controls. Established arthritis was significantly diminished compared to controls in rats given the late anti-VA treatment. In both protocols, radiographic evidence of joint destruction was significantly reduced compared to controls. T cell phenotyping using flow cytometry analysis demonstrated that the anti-VA antibody therapy selectively eliminated a small subset of T cells since there was little difference in total T cell counts in the experimental versus control groups. Delayed type hypersensitivity and IgG antibody titers to CII were minimally decreased in the experimental versus control group. These results suggest that antibodies raised to an oligoclonal arthritogenic T cell line can suppress collagen arthritis. This may have implications with respect to 1) the size of the T cell receptor repertoire involved in the pathogenesis of collagen arthritis and 2) immunospecific protocols for CIA and other autoimmune diseases.  相似文献   
38.
Dai Z  Edwards GE  Ku MS 《Plant physiology》1992,99(4):1426-1434
Castor bean (Ricinus communis L.) has a high photosynthetic capacity under high humidity and a pronounced sensitivity of photosynthesis to high water vapor pressure deficit (VPD). The sensitivity of photosynthesis to varying VPD was analyzed by measuring CO2 assimilation, stomatal conductance (gs), quantum yield of photosystem II (II), and nonphotochemical quenching of chlorophyll fluorescence (qN) under different VPD. Under both medium (1000) and high (1800 micromoles quanta per square meter per second) light intensities, CO2 assimilation decreased as the VPD between the leaf and the air around the leaf increased. The gs initially dropped rapidly with increasing VPD and then showed a slower decrease above a VPD of 10 to 20 millibars. Over a temperature range from 20 to 40°C, CO2 assimilation and gs were inhibited by high VPD (20 millibars). However, the rate of transpiration increased with increasing temperature at either low or high VPD due to an increase in gs. The relative inhibition of photosynthesis under photorespiring (atmospheric levels of CO2 and O2) versus nonphotorespiring (700 microbars CO2 and 2% O2) conditions was greater under high VPD (30 millibars) than under low VPD (3 millibars). Also, with increasing light intensity the relative inhibition of photosynthesis by O2 increased under high VPD, but decreased under low VPD. The effect of high VPD on photosynthesis under various conditions could not be totally accounted for by the decrease in the intercellular CO2 in the leaf (Ci) where Ci was estimated from gas exchange measurements. However, estimates of Ci from measurements of II and qN suggest that the decrease in photosynthesis and increase in photorespiration under high VPD can be totally accounted for by stomatal closure and a decrease in Ci. The results also suggest that nonuniform closure of stomata may occur in well-watered plants under high VPD, causing overestimates in the calculation of Ci from gas exchange measurements. Under low VPD, 30°C, high light, and saturating CO2, castor bean (C3 tropical shrub) has a rate of photosynthesis (61 micromoles CO2 per square meter per second) that is about 50% higher than that of tobacco (C3) or maize (C4) under the same conditions. The chlorophyll content, total soluble protein, and ribulose-1,5-bisphosphate carboxylase/oxygenase level on a leaf area basis were much higher in castor bean than in maize or tobacco, which accounts for its high rates of photosynthesis under low VPD.  相似文献   
39.
A transient 7-fold rise of ppGpp concentration, 2-3-fold increase of pppGpp concentration and 50 % drop of the concentration of GTP inBacillus megaterium cells immediately after their transfer to the sporulation medium were observed. Actinomycin D, in concentrations inhibiting RNA synthesis by 95%, blocked the rise of the (p)ppGpp pool and caused an instant several-fold increase of the GTP level. When the cells were exposed to actinomycin D in the sporulation medium for a 1-h period (time 0–1 h, 1–2 h or 2.20–3.20-h), they were able to form colonies on nutrient agar after being kept, in addition for 1–2 h in the sporulation medium free of the antibiotic. The ability of sporulation was, however, markedly limited. The share of cells that could sporulate increased when the irreversible sporulation phase was reached.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号