首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   10篇
  2023年   4篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   2篇
  2016年   7篇
  2015年   16篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   17篇
  2010年   14篇
  2009年   5篇
  2008年   11篇
  2007年   13篇
  2006年   13篇
  2005年   10篇
  2004年   3篇
  2003年   9篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   5篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
141.
The role of dietary fiber in supporting healthy gut microbiota and overall well-being of the host has been revealed in several studies. Here, we show the effect of a bacterial polyfructan levan on the growth dynamics and metabolism of fecal microbiota in vitro by using isothermal microcalorimetry. Eleven fecal samples from healthy donors were incubated in phosphate-buffered defined medium with or without levan supplementation and varying presence of amino acids. The generation of heat, changes in pH and microbiota composition, concentrations of produced and consumed metabolites during the growth were determined. The composition of fecal microbiota and profile of metabolites changed in response to substrate (levan and amino acids) availability. The main products of levan metabolism were acetic, lactic, butyric, propionic and succinic acids and carbon dioxide. Associated growth of levan-degrading (e.g. Bacteroides) and butyric acid-producing (e.g. Faecalibacterium) taxa was observed in levan-supplemented media. The study shows that the capacity of levan and possibly also other dietary fibers/prebiotics to modulate the composition and function of colon microbiota can be predicted by using isothermal microcalorimetry of fecal samples linked to metabolite and consortia analyses.  相似文献   
142.
Russian Journal of Bioorganic Chemistry - We have summarized the works on the synthesis and application of dimeric (oligomeric) cyclodextrin derivatives. Due to the presence of two or more internal...  相似文献   
143.
Polyelectrolyte multilayer films assembled from a hydrophobic N-alkylated polyethylenimine and a hydrophilic polyacrylate were discovered to exhibit strong antifouling, as well as antimicrobial, activities. Surfaces coated with these layer-by-layer (LbL) films, which range from 6 to 10 bilayers (up to 45 nm in thickness), adsorbed up to 20 times less protein from blood plasma than the uncoated controls. The dependence of the antifouling activity on the nature of the polycation, as well as on assembly conditions and the number of layers in the LbL films, was investigated. Changing the hydrophobicity of the polycation altered the surface composition and the resistance to protein adsorption of the LbL films. Importantly, this resistance was greater for coated surfaces with the polyanion on top; for these films, the average zeta potential pointed to a near neutral surface charge, thus, presumably minimizing their electrostatic interactions with the protein. The film surface exhibited a large contact angle hysteresis, indicating a heterogeneous topology likely due to the existence of hydrophobic-hydrophilic regions on the surface. Scanning electron micrographs of the film surface revealed the existence of nanoscale domains. We hypothesize that the existence of hydrophobic/hydrophilic nanodomains, as well as surface charge neutrality, contributes to the LbL film's resistance to protein adsorption.  相似文献   
144.
Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph oomycete pathogen of the model plant Arabidopsis thaliana and contains a large set of effector proteins that are translocated to the host to exert virulence functions or trigger immune responses. These effectors are characterized by conserved amino-terminal translocation sequences and highly divergent carboxyl-terminal functional domains. The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis. In this study, we identified a novel effector ATR39-1 by computational methods, which was found to trigger a resistance response in the Arabidopsis ecotype Weiningen (Wei-0). The allelic variant of this effector, ATR39-2, is not recognized, and two amino acid residues were identified and shown to be critical for this loss of recognition. The resistance protein responsible for recognition of the ATR39-1 effector in Arabidopsis is RPP39 and was identified by map-based cloning. RPP39 is a member of the CC-NBS-LRR family of resistance proteins and requires the signaling gene NDR1 for full activity. Recognition of ATR39-1 in Wei-0 does not inhibit growth of Hpa strains expressing the effector, suggesting complex mechanisms of pathogen evasion of recognition, and is similar to what has been shown in several other cases of plant-oomycete interactions. Identification of this resistance gene/effector pair adds to our knowledge of plant resistance mechanisms and provides the basis for further functional analyses.  相似文献   
145.
Exposure to a toxicant causes proteome alterations in an organism. In ecotoxicology, analysis of these changes may allow linking them to physiological and biochemical endpoints, providing insights into subcellular exposure effects and responses and, ultimately mechanisms of action. Based on this, useful protein markers of exposure can be identified. We investigated the proteome changes induced by the herbicides paraquat, diuron, and norflurazon in the green alga Chlamydomonas reinhardtii. Shotgun proteome profiling and spectral counting quantification in combination with G-test statistics revealed significant changes in protein abundance. Functional enrichment analysis identified protein groups that responded to the exposures. Significant changes were observed for 149-254 proteins involved in a variety of metabolic pathways. While some proteins and functional protein groups responded to several tested exposure conditions, others were affected only in specific cases. Expected as well as novel candidate markers of herbicide exposure were identified, the latter including the photosystem II subunit PsbR or the VIPP1 protein. We demonstrate that the proteome response to toxicants is generally more sensitive than the physiological and biochemical endpoints, and that it can be linked to effects on these levels. Thus, proteome profiling may serve as a useful tool for ecotoxicological investigations in green algae.  相似文献   
146.
Myelination allows the fast propagation of action potentials at a low energetic cost. It provides an insulating myelin sheath regularly interrupted at nodes of Ranvier where voltage-gated Na+ channels are concentrated. In the peripheral nervous system, the normal function of myelinated fibers requires the formation of highly differentiated and organized contacts between the myelinating Schwann cells, the axons and the extracellular matrix. Some of the major molecular complexes that underlie these contacts have been identified. Here we review current knowledge in this field.  相似文献   
147.
The effect of N-acetylcysteine (NAC) on morphological and physiological properties of "normal" 3T3 and 3T3-SV40 fibroblasts was studied. Incubation of the cells with 10 and 20 mM NAC for 20 h resulted in a reversible increase in the intracellular level of reduced glutathione and disorganization of actin cytoskeleton. Surprisingly, upon removal of NAC, 3T3-SV40 fibroblasts demonstrated formation of well-adhered cells with structured 3T3-like stress-fibers. Neither changes in glutathione levels, nor cytoskeleton disorganization/assembly abolished resistance of 3T3 cells to invasion by the bacterium Escherichia coli A2. On the other hand, pretreatment with NAC converted bacteria-susceptible 3T3-SV40 cells into resistant ones. These results show that NAC can induce partial reversion of transformed phenotype. We suggest that this effect is due to NAC-induced modifications of cell surface proteins rather than to changes in the level of intracellular glutathione.  相似文献   
148.
We have analyzed the topological organization of chromatin inside mitotic chromosomes. We show that mitotic chromatin is heavily self-entangled through experiments in which topoisomerase (topo) II is observed to reduce mitotic chromosome elastic stiffness. Single chromosomes were relaxed by 35% by exogenously added topo II in a manner that depends on hydrolysable adenosine triphosphate (ATP), whereas an inactive topo II cleavage mutant did not change chromosome stiffness. Moreover, experiments using type I topos produced much smaller relaxation effects than topo II, indicating that chromosome relaxation by topo II is caused by decatenation and/or unknotting of double-stranded DNA. In further experiments in which chromosomes are first exposed to protease to partially release protein constraints on chromatin, ATP alone relaxes mitotic chromosomes. The topo II–specific inhibitor ICRF-187 blocks this effect, indicating that it is caused by endogenous topo II bound to the chromosome. Our experiments show that DNA entanglements act in concert with protein-mediated compaction to fold chromatin into mitotic chromosomes.  相似文献   
149.
Methyl esters of fatty acids, free fatty acids, and hydrocarbons were found in the culture liquid and in the cellular lipids of the obligate methylotrophic bacterium Methylophilus quaylei under optimal growth conditions and osmotic stress. The main extracellular hydrophobic metabolite was methyl stearate. Exogenous free fatty acids C16–C18 and their methyl esters stimulated the M. quaylei growth and survivability, as well as production of exopolysaccharide under osmotic and oxidative stress, playing the role of growth factors and adaptogens. The order of hydrophobic supplements according to the ability to stimulate bacterial growth is C18: 1 > C18: 0 > C16: 0 > methyl oleate > methyl stearate > no supplements > C14: 0 > C12: 0. The mechanism underlying the protective action of fatty acids and their methyl esters is discussed.  相似文献   
150.
Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several-fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10-fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号