首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   106篇
  2163篇
  2023年   12篇
  2022年   21篇
  2021年   32篇
  2020年   21篇
  2019年   37篇
  2018年   56篇
  2017年   59篇
  2016年   73篇
  2015年   106篇
  2014年   99篇
  2013年   153篇
  2012年   165篇
  2011年   152篇
  2010年   101篇
  2009年   73篇
  2008年   134篇
  2007年   134篇
  2006年   112篇
  2005年   123篇
  2004年   113篇
  2003年   117篇
  2002年   79篇
  2001年   11篇
  2000年   12篇
  1999年   8篇
  1998年   21篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1987年   5篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1981年   5篇
  1978年   2篇
  1975年   2篇
  1963年   2篇
  1943年   2篇
  1941年   2篇
  1938年   1篇
  1936年   1篇
  1935年   1篇
  1934年   2篇
  1930年   3篇
排序方式: 共有2163条查询结果,搜索用时 15 毫秒
111.
112.
Domain motions of S-adenosyl-l-homocysteine (AdoHcy) hydrolase have been detected by time-resolved fluorescence anisotropy measurements. Time constants for reorientational motions in the native enzyme were compared with those for enzymes where key residues were altered by site-directed mutation. Mutations M351P, H353A, and P354A were selected in a hinge region for motion between the open and closed forms of the enzyme, as identified in a previous normal-mode study [Wang et al. (2005) Domain motions and the open-to-closed conformational transition of an enzyme: A normal-mode analysis of S-adenosyl-l-homocysteine hydrolase, Biochemistry 44, 7228-7239]. In wild-type, substrate-free AdoHcy hydrolase (NAD(+) cofactor in each subunit), reorientational motions were detected on time scales of 10-20 and 80-90 ns. The faster motion is attributed to the domain motion, and the slower motion is attributed to the tumbling of the enzyme. The domain motion was also detected for the enzyme complexes E(NADH/3'-keto-adenosine) and E(NAD(+)/3'-deoxyadenosine) but was absent for the complex E(NADH/3'-keto-neplanocin A). The results indicate that AdoHcy hydrolase exists in equilibrium of open and closed structures, with the equilibrium shifted toward the more mobile open form for the substrate-free enzyme, E(NAD(+)), and for intermediates formed early in the catalytic cycle after substrate binding or formed late prior to product release, E(NAD(+)/ligand). However, the strong inhibitor neplanocin A upon binding undergoes oxidation, forming the complex E(NADH/3'-keto-neplanocin). For this complex, which is analogous to the enzyme complex with the central catalytic intermediate, the equilibrium was shifted toward the more rigid closed form. A similar pattern was observed for M351P and P354A mutants. In contrast, the domain motion could not be detected, either in the absence or presence of ligands or with the cofactor in either the oxidized or reduced state, for the H353A protein, suggesting that this mutation changes the hinge-bending dynamics of the enzyme.  相似文献   
113.
Ribavirin (1,2,4-triazole-3-carboxamide riboside) is a well-known antiviral drug. Ribavirin has also been reported to inhibit human S-adenosyl-L-homocysteine hydrolase (Hs-SAHH), which catalyzes the conversion of S-adenosyl-L-homocysteine to adenosine and homocysteine. We now report that ribavirin, which is structurally similar to adenosine, produces time-dependent inactivation of Hs-SAHH and Trypanosoma cruzi SAHH (Tc-SAHH). Ribavirin binds to the adenosine-binding site of the two SAHHs and reduces the NAD(+) cofactor to NADH. The reversible binding step of ribavirin to Hs-SAHH and Tc-SAHH has similar K(I) values (266 and 194 microM), but the slow inactivation step is 5-fold faster with Tc-SAHH. Ribavirin may provide a structural lead for design of more selective inhibitors of Tc-SAHH as potential anti-parasitic drugs.  相似文献   
114.
Chicken cystatin, a homologue of human cystatin C, like other low-molecular-weight proteins is metabolized by renal proximal tubule cells. However, the precise mechanism(s) of this process has not been elucidated yet. To characterize chicken cystatin binding to renal brush-border membranes, the incubation of fluorescein labelled protein with rat cortical homogenate was performed. Saturation-dependent and reversible binding with low affinity (Kd = 3.67–4.07 μM) and high capacity (Bmax = 2.32–2.79 nmol/mg) was observed. Bovine albumin was the most potent competitor (Ki = 0.7 μM) among other megalin/cubilin ligands tested. The presence of Ca+ 2 ions was necessary to effective cystatin binding by brush-border membranes. Obtained data strongly support the hypothesis that chicken cystatin is a novel ligand for megalin/cubilin receptors tandem on proximal tubular cells.  相似文献   
115.
Homaeian L  Kurgan LA  Ruan J  Cios KJ  Chen K 《Proteins》2007,69(3):486-498
Secondary protein structure carries information about local structural arrangements, which include three major conformations: alpha-helices, beta-strands, and coils. Significant majority of successful methods for prediction of the secondary structure is based on multiple sequence alignment. However, multiple alignment fails to provide accurate results when a sequence comes from the twilight zone, that is, it is characterized by low (<30%) homology. To this end, we propose a novel method for prediction of secondary structure content through comprehensive sequence representation, called PSSC-core. The method uses a multiple linear regression model and introduces a comprehensive feature-based sequence representation to predict amount of helices and strands for sequences from the twilight zone. The PSSC-core method was tested and compared with two other state-of-the-art prediction methods on a set of 2187 twilight zone sequences. The results indicate that our method provides better predictions for both helix and strand content. The PSSC-core is shown to provide statistically significantly better results when compared with the competing methods, reducing the prediction error by 5-7% for helix and 7-9% for strand content predictions. The proposed feature-based sequence representation uses a comprehensive set of physicochemical properties that are custom-designed for each of the helix and strand content predictions. It includes composition and composition moment vectors, frequency of tetra-peptides associated with helical and strand conformations, various property-based groups like exchange groups, chemical groups of the side chains and hydrophobic group, auto-correlations based on hydrophobicity, side-chain masses, hydropathy, and conformational patterns for beta-sheets. The PSSC-core method provides an alternative for predicting the secondary structure content that can be used to validate and constrain results of other structure prediction methods. At the same time, it also provides useful insight into design of successful protein sequence representations that can be used in developing new methods related to prediction of different aspects of the secondary protein structure.  相似文献   
116.
Rhabdoviruses such as rabies virus (RV) encode only five multifunctional proteins accomplishing viral gene expression and virus formation. The viral phosphoprotein, P, is a structural component of the viral ribonucleoprotein (RNP) complex and an essential cofactor for the viral RNA-dependent RNA polymerase. We show here that RV P fused to enhanced green fluorescent protein (eGFP) can substitute for P throughout the viral life cycle, allowing fluorescence labeling and tracking of RV RNPs under live cell conditions. To first assess the functions of P fusion constructs, a recombinant RV lacking the P gene, SAD DeltaP, was complemented in cell lines constitutively expressing eGFP-P or P-eGFP fusion proteins. P-eGFP supported the rapid accumulation of viral mRNAs but led to low infectious-virus titers, suggesting impairment of virus formation. In contrast, complementation with eGFP-P resulted in slower accumulation of mRNAs but similar infectious titers, suggesting interference with polymerase activity rather than with virus formation. Fluorescence microscopy allowed the detection of eGFP-P-labeled extracellular virus particles and tracking of cell binding and temperature-dependent internalization into intracellular vesicles. Recombinant RVs expressing eGFP-P or an eGFP-P mutant lacking the binding site for dynein light chain 1 (DLC1) instead of P were used to track interaction with cellular proteins. In cells expressing a DsRed-labeled DLC1, colocalization of DLC1 with eGFP-P but not with the mutant P was observed. Fluorescent labeling of RV RNPs will allow further dissection of virus entry, replication, and egress under live-cell conditions as well as cell interactions.  相似文献   
117.
Heparin belongs to glycosaminoglycans (GAGs), a class of periodic linear anionic polysaccharides, which are functionally important components of the extracellular matrix owing to their interactions with various protein targets. Heparin is known to be involved in many cell signaling processes, while the experimental data available for heparin are significantly more abundant than for other GAGs. At the same time, the length and conformational flexibility of the heparin represent major challenges for its theoretical analysis. Coarse-grained (CG) approaches, which enable us to extend the size- and time-scale by orders of magnitude owing to reduction of system representation, appear, therefore, to be useful in simulating these systems. In this work, by using umbrella-sampling molecular dynamics simulations, we derived and parameterized the CG backbone-local potentials of heparin chains and the orientational potentials for the interactions of heparin with amino acid side chains to be further included in the physics-based Unified Coarse-Grained Model of biological macromolecules. With these potentials, simulations of extracellular matrix processes where both heparin and multiple proteins participate will be possible.  相似文献   
118.
The insect kinins are present in a wide variety of insects and function as potent diuretic peptides, though they are subject to rapid degradation by internal peptidases. Insect kinin analogs incorporating stereochemical variants of (2S,4S)-4-aminopyroglutamate (APy), a cis-peptide bond motif, demonstrate significant activity in a cricket diuretic assay. Insect kinin analogs containing (2R,4R)-APy, (2S,4R)-APy and (2S,4S)-APy are essentially equipotent on an insect diuretic assay, with EC(50) values of about 10(-7)M, whereas the (2R,4S)-APy analog is at least 10-fold more potent (EC(50) = 7 x 10(-9)M). Conformational studies in aqueous solution indicate that the (2R,4S)-APy analog is considerably more flexible than the other three variants, which may explain its greater potency. The work identifies the optimal stereochemistry for the APy scaffold with which to design biostable, peptidomimetic analogs with the potential to disrupt critical insect kinin-regulated processes in insects.  相似文献   
119.

Background

Limited data have indicated that body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and waist to height ratio (WHtR) of athletes and young adults provide misleading results concerning body fat content. This study was aimed at the evaluation of the relationship between different surrogate indices of fatness (BMI, WC, WHR, WHtR and body adiposity index (BAI)) with the percentage of body fat in Polish students with respect to their sex and physical activity.

Methods

A total of 272 students volunteered to participate in the study. Of these students, 177 physical education students (90 males and 87 females) were accepted as active (physical activity of 7 to 9 hours/week); and 95 students of other specializations (49 males and 46 females) were accepted as sedentary (physical activity of 1.5 hours/week). Weight, height, waist and hip circumferences were measured, and BMI, WHR, WHtR and BAI were calculated. Body fat percentage was assessed using four skinfold measurements.

Results

Classification of fatness according to the BMI and the percentage of body fat have indicated that BMI overestimates fatness in lean subjects (active men and women, sedentary men), but underestimates body fat in obese subjects (sedentary women). In all groups, BMI, WHR, WHtR and BAI were significantly correlated with the percentage of body fat (with the exception of WHR and hip circumference in active and sedentary women, respectively). However, coefficients of determination not exceeding 50% and Lin’s concordance correlation coefficients lower than 0.9 indicated no relationship between measured and calculated body fat.

Conclusion

The findings in the present study support the concept that irrespective of physical activity and sex none of the calculated indices of fatness are useful in the determination of body fat in young adults. Thus, it seems that easily calculated indices may contribute to distorted body image and unhealthy dietary habits observed in many young adults in Western countries, but also in female athletes.  相似文献   
120.
Structure and function of S-adenosylhomocysteine hydrolase   总被引:6,自引:0,他引:6  
In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号