首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2013篇
  免费   107篇
  2023年   11篇
  2022年   16篇
  2021年   32篇
  2020年   22篇
  2019年   36篇
  2018年   57篇
  2017年   58篇
  2016年   70篇
  2015年   109篇
  2014年   101篇
  2013年   148篇
  2012年   165篇
  2011年   151篇
  2010年   103篇
  2009年   74篇
  2008年   137篇
  2007年   133篇
  2006年   111篇
  2005年   120篇
  2004年   109篇
  2003年   118篇
  2002年   75篇
  2001年   10篇
  2000年   6篇
  1999年   6篇
  1998年   19篇
  1997年   10篇
  1996年   12篇
  1995年   11篇
  1994年   10篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   8篇
  1988年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1981年   5篇
  1978年   3篇
  1973年   4篇
  1969年   2篇
  1968年   2篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
  1961年   3篇
  1957年   1篇
  1955年   1篇
排序方式: 共有2120条查询结果,搜索用时 109 毫秒
41.
42.

Background and Aims

Cell wall pectins and arabinogalactan proteins (AGPs) are important for pollen tube growth. The aim of this work was to study the temporal and spatial dynamics of these compounds in olive pollen during germination.

Methods

Immunoblot profiling analyses combined with confocal and transmission electron microscopy immunocytochemical detection techniques were carried out using four anti-pectin (JIM7, JIM5, LM5 and LM6) and two anti-AGP (JIM13 and JIM14) monoclonal antibodies.

Key Results

Pectin and AGP levels increased during olive pollen in vitro germination. (1 → 4)-β-d-Galactans localized in the cytoplasm of the vegetative cell, the pollen wall and the apertural intine. After the pollen tube emerged, galactans localized in the pollen tube wall, particularly at the tip, and formed a collar-like structure around the germinative aperture. (1 → 5)-α-l-Arabinans were mainly present in the pollen tube cell wall, forming characteristic ring-shaped deposits at regular intervals in the sub-apical zone. As expected, the pollen tube wall was rich in highly esterified pectic compounds at the apex, while the cell wall mainly contained de-esterified pectins in the shank. The wall of the generative cell was specifically labelled with arabinans, highly methyl-esterified homogalacturonans and JIM13 epitopes. In addition, the extracellular material that coated the outer exine layer was rich in arabinans, de-esterified pectins and JIM13 epitopes.

Conclusions

Pectins and AGPs are newly synthesized in the pollen tube during pollen germination. The synthesis and secretion of these compounds are temporally and spatially regulated. Galactans might provide mechanical stability to the pollen tube, reinforcing those regions that are particularly sensitive to tension stress (the pollen tube–pollen grain joint site) and mechanical damage (the tip). Arabinans and AGPs might be important in recognition and adhesion phenomena of the pollen tube and the stylar transmitting cells, as well as the egg and sperm cells.  相似文献   
43.
We reinvestigated rearrangements occurring in region q13 of chromosome 11 aiming to: (i) describe heterogeneity of the observed structural alterations, (ii) estimate amplicon size and (iii) identify of oncogenes involved in laryngeal cancer progression as potential targets for therapy. The study included 17 cell lines derived from laryngeal cancers and 34 specimens from primary laryngeal tumors. The region 11q13 was analyzed by fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and gene expression microarray. Next, quantitative real time PCR was used for chosen genes to confirm results from aCGH and gene expression microarray. The observed pattern of aberrations allows to distinguish three ways, in which gain and amplification involving 11q13 region may occur: formation of a homogeneously staining region; breakpoints in/near 11q13, which lead to the three to sevenfold increase of the copy number of 11q13 region; the presence of additional copies of the whole chromosome 11. The minimal altered region of gain and/or amplification was limited to ~1.8 Mb (chr.11:69,395,184–71,209,568) and comprised mostly 11q13.3 band which contain 12 genes. Five, out of these genes (CCND1, ORAOV1, FADD, PPFIA1, CTTN) had higher expression levels in comparison to healthy controls. Apart from CCND1 gene, which has an established role in pathogenesis of head and neck cancers, CTTN, ORAOV1 and FADD genes appear to be oncogene-candidates in laryngeal cancers, while a function of PPFIA1 requires further studies.  相似文献   
44.
Among many alterations within the TP53 gene the rs1042522 (C72G, p.Pro72Arg) has been associated with numerous cancers , however the results differ between populations for opposite Pro or Arg alleles. Similar thus inconclusive results are observed in ovarian cancer, which may suggest that the rs1042522 does not influence ovarian carcinogensis directly, but might be linked to another pathogenic alteration. WRAP53 which overlaps the TP53 is required to maintain normal levels of p53 upon DNA damage, but also when altered may independently increase the risk of cancer. To evaluate the association between three SNPs located in WRAP53–TP53 region: rs1042522, rs2287497, rs2287498 and ovarian cancer risk in Polish population we genotyped 626 cases and 1,045 healthy controls. Our results provide the evidence for an association between studied SNPs and a risk of invasive ovarian cancer in Poland. We found that CC homozygotes in rs1042522 were more frequent in cancers when compared to controls (OR = 1.46, p = 0.03). Similarly in WRAP53 both TT homozygotes in rs2287497 (OR = 1.95, p = 0.03) and AA homozygotes in rs2287498 (OR = 2.65, p = 0,01) were more frequent among cases than healthy individuals. There is also a suggestive evidence that specific homozygosity of studied SNPs in TP53–WRAP53 region is significantly overrepresented in ovarian cancer patients. In conclusion SNPs in WRAP53 (rs2287497 and rs2287498) have stronger association with an ovarian cancer risk than rs1042522 in TP53.  相似文献   
45.
Although several genetic and biochemical factors are associated with the pathogenesis of retinal degeneration, it has yet to be determined how these different impairments can cause similar degenerative phenotypes. Here, we report microglial/macrophage activation in both a Stargardt disease and age-related macular degeneration mouse model caused by delayed clearance of all-trans-retinal from the retina, and in a retinitis pigmentosa mouse model with impaired retinal pigment epithelium (RPE) phagocytosis. Mouse microglia displayed RPE cytotoxicity and increased production of inflammatory chemokines/cytokines, Ccl2, Il1b, and Tnf, after coincubation with ligands that activate innate immunity. Notably, phagocytosis of photoreceptor proteins increased the activation of microglia/macrophages and RPE cells isolated from model mice as well as wild-type mice. The mRNA levels of Tlr2 and Tlr4, which can recognize proteins as their ligands, were elevated in mice with retinal degeneration. Bone marrow-derived macrophages from Tlr4-deficient mice did not increase Ccl2 after coincubation with photoreceptor proteins. Tlr4−/−Abca4−/−Rdh8−/− mice displayed milder retinal degenerative phenotypes than Abca4−/−Rdh8−/− mice. Additionally, inactivation of microglia/macrophages by pharmacological approaches attenuated mouse retinal degeneration. This study demonstrates an important contribution of TLR4-mediated microglial activation by endogenous photoreceptor proteins in retinal inflammation that aggravates retinal cell death. This pathway is likely to represent an underlying common pathology in degenerative retinal disorders.  相似文献   
46.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   
47.
48.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   
49.
Rhodopsin, the prototypical G-protein-coupled receptor, which is densely packed in the disc membranes of rod outer segments, was proposed to function as a monomer. However, a growing body of evidence indicates dimerization and oligomerization of numerous G-protein-coupled receptors, and atomic force microscopy images revealed rows of rhodopsin dimers in murine disc membranes. In this work we demonstrate by electron microscopy of negatively stained samples, blue native- and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, chemical crosslinking, and by proteolysis that native bovine rhodopsin exists mainly as dimers and higher oligomers. These results corroborate the recent findings from atomic force microscopy and molecular modeling on the supramolecular structure and packing arrangement of murine rhodopsin dimers.  相似文献   
50.
We report here that large conductance K+ selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of 86Rb+ into chromaffin granules prepared from bovine adrenal gland medulla. The 86Rb+ influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432±9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca2+-activated K+ channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号