首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   6篇
  2022年   5篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   13篇
  2012年   14篇
  2011年   6篇
  2010年   16篇
  2009年   9篇
  2008年   10篇
  2007年   11篇
  2006年   3篇
  2005年   11篇
  2004年   10篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有147条查询结果,搜索用时 250 毫秒
121.
The aim of our study was to evaluate electrogenetherapy with p53wt alone or combined with cisplatin on two colorectal (HT-29 and LoVo) and two prostatic (PC-3 and Du145) carcinoma cell lines with different p53 status. In addition, the feasibility of electrogenetherapy with p53wt was tested also in vivo on PC-3 prostatic cancer xenografts. Electrogenetherapy with p53wt was dependent on the p53 status of the cell lines used. Electrogenetherapy was the most effective on the PC-3 (p53 null) and Du145 (p53mt) cells, and to the much lesser extent in LoVo cells (p53wt). The exception was the HT-29 cell line with overexpressed mutated p53, where electrogenetherapy with p53wt was the least effective. Sensitivity of the cell lines to cisplatin was independent of the p53 status. Furthermore, the presence of exogenous p53 due to electrogenetherapy did not enhance cisplatin cytotoxicity, since the combination of these therapies resulted in additive cytotoxic effect. The effectiveness of electrogenetherapy with p53wt was also demonstrated in vivo by successful treatment of subcutaneous PC-3 tumors in mice. In conclusion, our study shows that electrogenetherapy with p53wt is feasible, and resulted in comparable cytotoxic and antitumor effectiveness to viral-mediated p53wt gene therapy. This therapy was effective and dependent on the p53 status of the tumor cell lines. Combination of electrogenetherapy and cisplatin resulted in additional cell kill by cisplatin, and was not dependent on the p53 status.  相似文献   
122.
Endogenous cysteine proteases were given much attention lately, as their role in a variety of pathophysiological disorders became evident. Amongst them cathepsins, which are thought to be implicated in mediation of osteoporosis, cancer progression, atherosclerosis, and many other conditions, are of considerable interest as drug targets. In the presented work, papain was chosen as a model cysteine protease and panning protocol was optimized for selection of papain-binding phage-displayed peptides from a commercially available combinatorial peptide library. Different selection strategies were applied in order to select high-affinity binders. Ultimately, five cyclic peptides (CNWAAGYNCGGGS-NH2, CWSMMGFQCGGGS-NH2, CWEWGGWHCGGSS-OH, CNWTLGGYKCGGGS-NH2 (all cyclized through formation of intramolecular disulphide bond), and GNWTLGGYKGG (cyclized head-to-tail)) were synthesized and tested for inhibitory activity towards papain and human cathepsins L, B, H, and K. The peptides possess inhibitory constants in the low micromolar to mid-nanomolar range and exhibit certain selectivity for different lysosomal cysteine proteases included in this study.  相似文献   
123.
The L1 chip is used intensively for protein-membrane interaction studies in Biacore surface plasmon resonance systems. The exact form of captured lipid membranes on the chip is, however, not precisely known. Evidence exists that the vesicles both remain intact after the binding to the chip and fuse to form a large single-bilayer membrane. In this study, we were able to bind up to approximately 11,500 resonance units of zwitterionic liposomes (100 nm in diameter) at a low flow rate. We show by fluorescence microscopy that the entire surface of the flow cell is covered homogeneously by liposomes. Negatively charged vesicles (i.e., those composed of phosphatidylcholine/phosphatidylglycerol [1:1]) always deposited less densely, but we were able to increase the density slightly with the use of calcium chloride that promotes fusion of the vesicles. Finally, we used zwitterionic liposomes loaded with fluorescent probe calcein to show that they remain intact after the capture on the L1 chip. The fluorescence was lost only after we used equinatoxin, a well-studied pore-forming toxin, to perform on-chip permeabilization of vesicles. The characteristics of permeabilization process for chip-immobilized liposomes are similar to those of liposomes free in solution. All results collectively suggest that liposomes do not fuse to form a single bilayer on the surface of the chip.  相似文献   
124.
125.
126.
Synthetic scaffolds that permit spatial and temporal organization of enzymes in living cells are a promising post-translational strategy for controlling the flow of information in both metabolic and signaling pathways. Here, we describe the use of plasmid DNA as a stable, robust and configurable scaffold for arranging biosynthetic enzymes in the cytoplasm of Escherichia coli. This involved conversion of individual enzymes into custom DNA-binding proteins by genetic fusion to zinc-finger domains that specifically bind unique DNA sequences. When expressed in cells that carried a rationally designed DNA scaffold comprising corresponding zinc finger binding sites, the titers of diverse metabolic products, including resveratrol, 1,2-propanediol and mevalonate were increased as a function of the scaffold architecture. These results highlight the utility of DNA scaffolds for assembling biosynthetic enzymes into functional metabolic structures. Beyond metabolism, we anticipate that DNA scaffolds may be useful in sequestering different types of enzymes for specifying the output of biological signaling pathways or for coordinating other assembly-line processes such as protein folding, degradation and post-translational modifications.  相似文献   
127.
128.
129.
130.
Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号