首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   10篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   12篇
  2011年   5篇
  2010年   5篇
  2009年   4篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1987年   1篇
  1986年   1篇
  1983年   2篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
21.
22.
Photosynthesis Research - The oxidation of water to O2 is catalyzed by the Oxygen Evolving Complex (OEC), a Mn4CaO5 complex in Photosystem II (PSII). The OEC is sequentially oxidized from state S0...  相似文献   
23.
The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.  相似文献   
24.
Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency''s (EPA''s) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA''s ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism-focused investigations within zebrafish and mammalian models.  相似文献   
25.
26.

Background

Mosquito salivary proteins (MSPs) modulate the host immune response, leading to enhancement of arboviral infections. Identification of proteins in saliva responsible for immunomodulation and counteracting their effects on host immune response is a potential strategy to protect against arboviral disease. We selected a member of the D7 protein family, which are among the most abundant and immunogenic in mosquito saliva, as a vaccine candidate with the aim of neutralizing effects on the mammalian immune response normally elicited by mosquito saliva components during arbovirus transmission.

Methodology/Principal Findings

We identified D7 salivary proteins of Culex tarsalis, a West Nile virus (WNV) vector in North America, and expressed 36 kDa recombinant D7 (rD7) protein for use as a vaccine. Vaccinated mice exhibited enhanced interferon-γ and decreased interleukin-10 expression after uninfected mosquito bite; however, we found unexpectedly that rD7 vaccination resulted in enhanced pathogenesis from mosquito-transmitted WNV infection. Passive transfer of vaccinated mice sera to naïve mice also resulted in increased mortality rates from subsequent mosquito-transmitted WNV infection, implicating the humoral immune response to the vaccine in enhancement of viral pathogenesis. Vaccinated mice showed decreases in interferon-γ and increases in splenocytes producing the regulatory cytokine IL-10 after WNV infection by mosquito bite.

Conclusions/Significance

Vector saliva vaccines have successfully protected against other blood-feeding arthropod-transmitted diseases. Nevertheless, the rD7 salivary protein vaccine was not a good candidate for protection against WNV disease since immunized mice infected via an infected mosquito bite exhibited enhanced mortality. Selection of salivary protein vaccines on the bases of abundance and immunogenicity does not predict efficacy.  相似文献   
27.
Wiegert KE  Bennett MS  Triemer RE 《Protist》2012,163(6):832-843
The chloroplast genome of Eutreptia viridis Perty, a basal taxon in the photosynthetic euglenoid lineage, was sequenced and compared with that of Euglena gracilis Ehrenberg, a crown species. Several common gene clusters were identified and gene order, conservation, and sequence similarity was assessed through comparisons with Euglena gracilis. Significant gene rearrangements were present between Eutreptia viridis and Euglena gracilis chloroplast genomes. In addition, major expansion has occurred in the Euglena gracilis chloroplast accounting for its larger size. However, the key chloroplast genes are present and differ only in the absence of psaM and roaA in Eutreptia viridis, and psaI in Euglena gracilis, suggesting a high level of gene conservation within the euglenoid lineage. Further comparisons with the plastid genomes of closely related green algal taxa have provided additional support for the hypothesis that a Pyramimonas-like alga was the euglenoid chloroplast donor via secondary endosymbiosis.  相似文献   
28.
Nasopharyngeal colonization provides bacteria with a place of residence, a platform for person-to-person transmission and for many opportunistic pathogens it is a prerequisite event towards the development of invasive disease. Therefore, how host factors within the nasopharynx contribute to, inhibit or otherwise shape biofilm formation, the primary mode of existence for colonizing bacteria, and how biofilm bacteria subvert the acute inflammatory response that facilitates clearance, are important topics for future microbiological research. This review proposes the examination of host components as bridging molecules for bacterial interactions during biofilm formation, altered virulence determinant production and cell wall modification as a mechanism for immunoquiescence, and the role of host factors as signals and co-opted mechanisms for bacterial dissemination, together providing an opportunity for disease.  相似文献   
29.
30.
Phosphatase of Regenerating Liver (PRL) family members have emerged as molecular markers that significantly correlate to the ability of many cancers to metastasize. However, contradictory cellular responses to PRL expression have been reported, including the inhibition of cell cycle progression. An obvious culprit for the discrepancy is the use of dozens of different cell lines, including many isolated from tumors or cultured cells selected for immortalization which may have missing or mutated modulators of PRL function. We created transgenic Drosophila to study the effects of PRL overexpression in a genetically controlled, organismal model. Our data support the paradigm that the normal cellular response to high levels of PRL is growth suppression and furthermore, that PRL can counter oncogenic activity of Src. The ability of PRL to inhibit growth under normal conditions is dependent on a CAAX motif that is required to localize PRL to the apical edge of the lateral membrane. However, PRL lacking the CAAX motif can still associate indiscriminately with the plasma membrane and retains its ability to inhibit Src function. We propose that PRL binds to other membrane-localized proteins that are effectors of Src or to Src itself. This first examination of PRL in a model organism demonstrates that PRL performs as a tumor suppressor and underscores the necessity of identifying the conditions that enable it to transform into an oncogene in cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号