首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   7篇
  2022年   1篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   8篇
  2011年   9篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1978年   2篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
91.
The cytoplasmic dynein motor complex is known to exist in multiple forms, but few specific functions have been assigned to individual subunits. A key limitation in the analysis of dynein in intact mammalian cells has been the reliance on gross perturbation of dynein function, e.g., inhibitory antibodies, depolymerization of the entire microtubule network, or the use of expression of dominant negative proteins that inhibit dynein indirectly. Here, we have used RNAi and automated image analysis to define roles for dynein subunits in distinct membrane-trafficking processes. Depletion of a specific subset of dynein subunits, notably LIC1 (DYNC1LI1) but not LIC2 (DYNC1LI2), recapitulates a direct block of ER export, revealing that dynein is required to maintain the steady-state composition of the Golgi, through ongoing ER-to-Golgi transport. Suppression of LIC2 but not of LIC1 results in a defect in recycling endosome distribution and cytokinesis. Biochemical analyses also define the role of each subunit in stabilization of the dynein complex; notably, suppression of DHC1 or IC2 results in concomitant loss of Tctex1. Our data demonstrate that LIC1 and LIC2 define distinct dynein complexes that function at the Golgi versus recycling endosomes, respectively, suggesting that functional populations of dynein mediate discrete intracellular trafficking pathways.  相似文献   
92.
The variation in biochemical and serological features of 128 isolates of Pseudomonas corrugata has been studied with 56 isolates from Spain and 72 isolates from other countries. Isolates were analyzed with common diagnostic tests and with the AP150CHE system. Variability among isolates for some standard tests usually listed as positive or negative for this species, such as arginine dihydrolase and gelatin hydrolysis, lipase and lecithinase activities, pigment production, and wrinkled colony morphology, was observed. Three antisera were raised against the type strain and two Spanish isolates from tomato and pepper plants. Serological reactions were studied by indirect immunofluorescence and indirect enzyme-linked immunosorbent assay. Eighty-three isolates reacted with a single antiserum, 6 reacted with two antisera, and none reacted with three antisera. Thirty-nine isolates did not react with any of the three antisera. These results suggest that serology will not be a useful method for routine diagnosis of P. corrugata unless common antigens can be identified. Electrophoresis and immunoelectrotransfer were used to study the antigens involved. Each antiserum reacted with whole-cell lysates, giving two common bands for P. corrugata isolates and other Pseudomonas species and a ladder-like pattern characteristic of lipopolysaccharides (LPS). Common bands were not observed after proteinase K treatment. More than 10 LPS patterns were distinguished in 98 isolates after silver staining of polyacrylamide gels. There was no correlation between the geographical origin or host of the isolates and the LPS patterns. A correlation between LPS groups and serological reaction was observed.  相似文献   
93.
We present a model for the metabolic coupling between rhizobia and plant cell in the nitrogen-fixing legume root nodules. The symbiosome, an organelle-like structure formed by the modified rhizobia (the bacteroids) enclosed by a plant cell derived peribacteroid membrane, is an unique structure in which two energized membranes are closely packed: the inner bacteroid membrane and the peribacteroid membrane that possesses an ATPase proton pump. The model is based on the following points: (i) The permeability for hydrogen ions of the outer membrane of the rhizobia. (ii) The reversibility of the ATPase proton pump of the peribacteroid membrane [Szafran, M. M. and Haaker, H. (1995) Plant Physiol. 108, 1227–1232]. (iii) The relative affinites for oxygen of the bacteroid and plant mitochondria terminal oxidases, and the prevailing oxygen concentration inside the nodule, which results in aerobic metabolism for the bacteroid, but in quite fermentative catabolism for the host plant cell. We propose that the bacteroid can transiently supply free energy to the plant cell in the form of protonmotive force by the movement of hydrogen ions from the bacteroid periplasmic space to the plant cytoplasm through the peribacteroid membrane ATPase. The proposed hydrogen ion flux could be dependent on the phosphorylation potential in both the plant cell cytoplasm and the bacteroid, and the simultaneous ion movements to avoid the development of opposite . It could be important in situations of transient ATP depletion inside plant cell, which involves the block of ammonia assimilation and, subsequently, the inhibition of bacteroid nitrogenase.  相似文献   
94.
Microbial lipase production on a polymeric resin   总被引:1,自引:0,他引:1  
Rhizopus delemar was grown in a submerged culture and produced a lipase at 14 U/ml. It was compared with solid state fermentation with a polymeric resin (Amberlite). The lipase was produced and simultaneously adsorbed on the support: 96 U/g initial dry matter were obtained when dextrin was used as the carbon source against only 68 and 58 U/g for maltose and glucose, respectively.  相似文献   
95.
Discrepin is a scorpion peptide that blocks preferentially the IA currents of the voltage-dependent K+ channel of rat cerebellum granular cells. It was isolated from the venom of the buthid scorpion Tityus discrepans and contains 38 amino acid residues with a pyroglutamic acid at the N-terminal site. Discrepin has the lowest sequence identity (approx. 50%) among the six members of the α-KTx15 sub-family of scorpion toxins. In order to find out which residues are important for the blocking effects of Discrepin, six mutants were chemically synthesized (V6K, I19R, D20K, T35V, I19R-D20K, I19R-D20K-R21V), correctly folded and their physiological properties were examined. Substitution of residues V6 and D20 for basically charged amino acids increases the blocking activity of Discrepin, specially the mutation V6K at the N-terminal segment of the toxin. Analysis of 3D-structure models of the mutants V6K and D20K supports the idea that basic residues improve their blocking activities, similarly to what happens with BmTx3, a toxic peptide obtained from Buthus martensi scorpion, which has the highest known blocking effects of IA currents in K+ channels of rat cerebellum granular cells.  相似文献   
96.
Delta-paluIT1 and delta-paluIT2 are toxins purified from the venom of the spider Paracoelotes luctuosus. Similar in sequence to mu-agatoxins from Agelenopsis aperta, their pharmacological target is the voltage-gated insect sodium channel, of which they alter the inactivation properties in a way similar to alpha-scorpion toxins, but they bind on site 4 in a way similar to beta-scorpion toxins. We determined the solution structure of the two toxins by use of two-dimensional nuclear magnetic resonance (NMR) techniques followed by distance geometry and molecular dynamics. The structures of delta-paluIT1 and delta-paluIT2 belong to the inhibitory cystine knot structural family, i.e. a compact disulfide-bonded core from which four loops emerge. Delta-paluIT1 and delta-paluIT2 contain respectively two- and three-stranded anti-parallel beta-sheets as unique secondary structure. We compare the structure and the electrostatic anisotropy of those peptides to other sodium and calcium channel toxins, analyze the topological juxtaposition of key functional residues, and conclude that the recognition of insect voltage-gated sodium channels by these toxins involves the beta-sheet, in addition to loops I and IV. Besides the position of culprit residues on the molecular surface, difference in dipolar moment orientation is another determinant of receptor binding and biological activity differences. We also demonstrate by electrophysiological experiments on the cloned insect voltage-gated sodium channel, para, heterologuously co-expressed with the tipE subunit in Xenopus laevis oocytes, that delta-paluIT1 and delta-paluIT2 procure an increase of Na+ current. delta-PaluIT1-OH seems to have less effect when the same concentrations are used.  相似文献   
97.
The hemolytic activity of six cationic amphipathic peptides (Oxki1, Oxki2, Pin1, Pin2, IsCT1 and IsCT2) from arachnids strongly depends on the source of red blood cells. The hemolytic activity of the amphipathic peptides was correlated to the phosphocholine-to-sphingomyelin ratio (PC/SM) content, the potency order of which on mammal erythrocytes ranked as follows Guinea pig>pig>sheep. The spider peptides, Oxki1 and Oxki2, prefer small unilamellar vesicles (SUV) composed of PC, but they could not disrupt SUVs made of SM only. Moreover, the membrane-disrupting activity of the scorpion peptide Pin1 was affected by increasing concentrations of SM. Only the scorpion hemolytic peptide Pin2 was able to disrupt SUVs composed merely of SM at high concentrations. Finally, the short scorpion peptides IsCT1 and IsCT2 seem to tolerate high concentrations of SM in the presence of PC for disruption of SUVs; however, the disrupting activities of IsCT1 and IsCT2 are much lower than that of the other four hemolytic peptides. The hemolytic activity caused by all six cationic peptides in mammalian erythrocytes was positively correlated to increases in temperature and increases in the concentration of benzyl alcohol, a membrane fluidizing agent. It was concluded that the hemolytic activity of the cationic peptides strongly depends on the PC/SM content of mammalian erythrocytes, in which cell membranes with a low PC/SM ratio (i.e., of low fluidity) were less disturbed than membranes with a high PC/SM ratio (i.e., of high fluidity).  相似文献   
98.
99.
Cationic antimicrobial peptides (AMPs) have attracted a great interest as novel class of antibiotics that might help in the treatment of infectious diseases caused by pathogenic bacteria. However, some AMPs with high antimicrobial activities are also highly hemolytic and subject to proteolytic degradation from human and bacterial proteases that limit their pharmaceutical uses. In this work a d-diastereomer of Pandinin 2, d-Pin2, was constructed to observe if it maintained antimicrobial activity in the same range as the parental one, but with the purpose of reducing its hemolytic activity to human erythrocytes and improving its ability to resist proteolytic cleavage. Although, the hydrophobic and secondary structure characteristics of l- and d-Pin2 were to some extent similar, an important reduction in d-Pin2 hemolytic activity (30–40 %) was achieved compared to that of l-Pin2 over human erythrocytes. Furthermore, d-Pin2 had an antimicrobial activity with a MIC value of 12.5 μM towards Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae and two strains of Pseudomonas aeruginosa in agar diffusion assays, but it was half less potent than that of l-Pin2. Nevertheless, the antimicrobial activity of d-Pin2 was equally effective as that of l-Pin2 in microdilution assays. Yet, when d- and l-Pin2 were incubated with trypsin, elastase and whole human serum, only d-Pin2 kept its antimicrobial activity towards all bacteria, but in diluted human serum, l- and d-Pin2 maintained similar peptide stability. Finally, when l- and d-Pin2 were incubated with proteases from P. aeruginosa DFU3 culture, a clinical isolated strain, d-Pin2 kept its antibiotic activity while l-Pin2 was not effective.  相似文献   
100.
The gene of the four disulfide-bridged Centruroides suffusus suffusus toxin II was cloned into the expression vector pQE30 containing a 6His-tag and a FXa proteolytic cleavage region. This recombinant vector was transfected into Escherichia coli BL21 cells and expressed under induction with isopropyl thiogalactoside (IPTG). The level of expression was 24.6 mg/l of culture medium, and the His tagged recombinant toxin (HisrCssII) was found exclusively in inclusion bodies. After solubilization the HisrCssII peptide was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisrCssII product obtained from the affinity chromatography step showed several peptide fractions having the same molecular mass of 9392.6 Da, indicating that HisrCssII was oxidized forming several distinct disulfide bridge arrangements. The multiple forms of HisrCssII after reduction eluted from the column as a single protein component of 9400.6 Da. Similarly, an in vitro folding of the reduced HisrCssII generated a single oxidized component of HisrCssII, which was cleaved by the proteolytic enzyme FXa to the recombinant CssII (rCssII). The molecular mass of rCssII was 7538.6 Da as expected. Since native CssII (nCssII) is amidated at the C-terminal residue whereas the rCssII is heterologously expressed in the format of free carboxyl end, there is a difference of 1 Da, when comparing both peptides (native versus heterologously expressed). Nevertheless, they show similar toxicity when injected intracranially into mice, and both nCssII and rCssII show the typical electrophysiological properties of beta-toxins in Nav1.6 channels, which is for the first time demonstrated here. Binding and displacement experiments conducted with radiolabelled CssII confirms the electrophysiological results. Several problems associated with the heterologously expressed toxins containing four disulfide bridges are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号