首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   48篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   13篇
  2015年   16篇
  2014年   13篇
  2013年   20篇
  2012年   24篇
  2011年   20篇
  2010年   9篇
  2009年   9篇
  2008年   14篇
  2007年   10篇
  2006年   15篇
  2005年   4篇
  2004年   12篇
  2003年   10篇
  2002年   14篇
  2001年   9篇
  2000年   8篇
  1999年   17篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   12篇
  1991年   1篇
  1990年   5篇
  1989年   12篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
排序方式: 共有339条查询结果,搜索用时 296 毫秒
41.
42.
Recognition of bacterial constituents by mast cells (MCs) is dependent on the presence of pattern recognition receptors, such as Toll-like receptors (TLRs). The final cellular response, however, depends on the influence of multiple environmental factors. In the current study we tested the hypothesis that the PI3K-activating ligands insulin-like growth factor-1 (IGF-1), insulin, antigen, and Steel Factor (SF) are able to modulate the TLR4-mediated production of proinflammatory cytokines in murine MCs. Costimulation with any of these ligands caused increased LPS-triggered secretion of IL-6 and TNF-α, but attenuated the production of IL-1β, though all three cytokines were produced in an NFκB-dependent manner. The pan-specific PI3K-inhibitor Wortmannin reverted the altered production of these cytokines. In agreement, MCs deficient for SHIP1, a negative regulator of the PI3K pathway, showed augmented secretion of IL-6/TNF-α and reduced production of IL-1β in response to LPS alone. The differential effects of IGF-1 on TLR4-mediated cytokine production were also observed in the context of TLR2 and IL-33 receptor-mediated MC activation. Importantly, these effects were seen in both bone marrow-derived and peritoneal MCs, suggesting general relevance for MCs. Using pharmacological and genetic tools, we could show that the p110δ isoform of PI3K is strongly implicated in SF-triggered suppression of LPS-induced IL-1β production. Costimulation with antigen was affected to a lesser extent. In conclusion, NFκB-dependent production of proinflammatory cytokines in MCs is differentially controlled by PI3K-activating ligand/receptor systems.  相似文献   
43.
Steady-state and transient kinetic studies were performed to functionally analyze the overall and partial reactions of the Ca(2+) transport cycle of the human secretory pathway Ca(2+)/Mn(2+)-ATPase 1 (SPCA1) isoforms: SPCA1a, SPCA1b, SPCA1c, and SPCA1d (encoded by ATP2C1, the gene defective in Hailey-Hailey disease) upon heterologous expression in mammalian cells. The expression levels of SPCA1 isoforms were 200-350-fold higher than in control cells except for SPCA1c, whose low expression level appears to be the effect of rapid degradation because of protein misfolding. Relative to SERCA1a, the active SPCA1a, SPCA1b, and SPCA1d enzymes displayed extremely high apparent affinities for cytosolic Ca(2+) in activation of the overall ATPase and phosphorylation activities. The maximal turnover rates of the ATPase activity for SPCA1 isoforms were 4.7-6.4-fold lower than that of SERCA1a (lowest for the shortest SPCA1a isoform). The kinetic analysis traced these differences to a decreased rate of the E(1) approximately P(Ca) to E(2)-P transition. The apparent affinity for inorganic phosphate was reduced in the SPCA1 enzymes. This could be accounted for by an enhanced rate of the E(2)-P hydrolysis, which showed constitutive activation, lacking the SERCA1a-specific dependence on pH and K(+).  相似文献   
44.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   
45.
Recent climate change has triggered profound reorganization in northeast Atlantic ecosystems, with substantial impact on the distribution of marine assemblages from plankton to fishes. However, assessing the repercussions on apex marine predators remains a challenging issue, especially for pelagic species. In this study, we use Bayesian coalescent modelling of microsatellite variation to track the population demographic history of one of the smallest temperate cetaceans, the harbour porpoise (Phocoena phocoena) in European waters. Combining genetic inferences with palaeo-oceanographic and historical records provides strong evidence that populations of harbour porpoises have responded markedly to the recent climate-driven reorganization in the eastern North Atlantic food web. This response includes the isolation of porpoises in Iberian waters from those further north only approximately 300 years ago with a predominant northward migration, contemporaneous with the warming trend underway since the ‘Little Ice Age’ period and with the ongoing retreat of cold-water fishes from the Bay of Biscay. The extinction or exodus of harbour porpoises from the Mediterranean Sea (leaving an isolated relict population in the Black Sea) has lacked a coherent explanation. The present results suggest that the fragmentation of harbour distribution range in the Mediterranean Sea was triggered during the warm ‘Mid-Holocene Optimum’ period (approx. 5000 years ago), by the end of the post-glacial nutrient-rich ‘Sapropel’ conditions that prevailed before that time.  相似文献   
46.
HSP90 chaperones a large number of proteins, and it plays essential roles in multiple signaling pathways to maintain protein homeostasis in the cytosol. In addition, HSP90 has been implicated in mediating recognition of lipopolysaccharide (LPS). However, no pharmacologic agents have been developed to interrogate this pathway. Herein we demonstrate that a peptide-based inhibitor that was previously reported to inhibit the master Toll-like receptor-chaperone gp96, an endoplasmic reticulum paralog of HSP90, in fact blocks HSP90-LPS interaction. It inhibited the binding of LPS to the cell surface of both wild type and gp96-null cells and thereby abrogated the cellular response to LPS but not to other Toll-like receptor ligands. We also generated a series of peptide derivatives (named peptide inhibitors of endotoxin responsiveness (PIERs)) from the N-terminal helix structure of HSP90 and demonstrated their effectiveness in blocking LPS activity. PIER inhibition of LPS signaling was partially reversed by CD14 expression. Moreover, we found that a cell-permeable PIER abrogated HSP90 function and caused degradation of multiple known HSP90 client proteins in cancer cells. Thus, targeting HSP90 is a promising modality for treatment of both LPS-mediated pathology and cancer.  相似文献   
47.
Arctostylopids are enigmatic mammals known from the Paleocene and Early Eocene of Asia and North America. Based on molar similarities, they have most often been grouped with the extinct Notoungulata from South and Central America, but tarsal evidence links them to Asian basal gliriforms. Although Palaeostylops is the best-known arctostylopid genus, some points of its content and species level taxonomy remain uncertain. Here we report 255 upper and lower jaw fragments of Palaeostylops, five calcanea, three astragali, as well as the first known arctostylopid distal tibia. This new material was collected from the late Paleocene of the Flaming Cliffs area in Mongolia, in a single lens almost exclusively containing arctostylopid remains. Our study of the morphology and size of the new Palaeostylops dental material confirms the validity of two species, P. iturus and P. macrodon, and illustrates their morphological and biometrical variability and diagnostic differences. The distal tibia of Palaeostylops is relatively unspecialised and resembles the Asian gliriforms Pseudictops and Rhombomylus. We also review the relevance of the historically important genus Palaeostylops in view of other, more recently described but less abundant arctostylopid genera. Palaeostylops remains the reference taxon for the arctostylopid anterior dentition and postcranial morphology. For both anatomical regions, arctostylopids differ significantly from notoungulates, and present a mosaic of characters also seen in basal gliriforms. The notoungulate-like molars of Palaeostylops are highly specialized for arctostylopids and the arctostylopid molar morphotype is therefore better illustrated by the early middle Paleocene Asiostylops. This morphotype does not present any similarities to notoungulates, but shares a number of derived characters with basal gliriforms. Among gliriforms, the primitive arctostylopid morphotype is most similar to Astigale from the early Paleocene of South China, and we suggest that Arctostylopidae may therefore be more closely related to Astigalidae than to any other group.  相似文献   
48.
Here we report on nine microsatellite loci designed for Aspergillus sydowii, a widely distributed soil saprobe that is also the pathogenic agent of aspergillosis in Caribbean sea fan corals. Primers were tested on 20 A. sydowii isolates from the Caribbean, 17 from diseased sea fans and three from environmental sources. All loci were polymorphic and exhibited varying degrees of allelic diversity (three to nine alleles). Gene diversity (expected heterozygosity) ranged from 0.353 to 0.821. These primers will enable future research into the epidemiology of A. sydowii as an emergent infectious disease.  相似文献   
49.
BACKGROUND INFORMATION: The IP(3)R (inositol 1,4,5-trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca(2+) release in virtually all cell types. We have previously demonstrated that caspase-3-mediated cleavage of IP(3)R1 during cell death generates a C-terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP(3)R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. RESULTS: In the present study, we demonstrate that expression of the caspase-3-cleaved C-terminus of IP(3)R1 increased the rate of thapsigargin-mediated Ca(2+) leak and decreased the rate of Ca(2+) uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca(2+) stores. We detected the truncated IP(3)R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP(3)R1 blocked sperm factor-induced Ca(2+) oscillations and induced an apoptotic phenotype. CONCLUSIONS: In the present study, we show that caspase-3-mediated truncation of IP(3)R1 enhanced the Ca(2+) leak from the ER. We suggest a model in which, in normal conditions, the increased Ca(2+) leak is largely compensated by enhanced Ca(2+)-uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca(2+) leak acts as a feed-forward mechanism to divert the cell into apoptosis.  相似文献   
50.
Using bone marrow derived mast cells from SH2-containing inositol-5-phosphatase (SHIP) +/+ and minus sign/minus sign mice, we found that the loss of SHIP leads to a dramatic increase in Steel Factor (SF)-stimulated phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), a substantial reduction in PI(3,4)P(2), and no change in PI(4,5)P(2) levels. We also found that SF-induced activation of protein kinase B (PKB) is increased and prolonged in SHIP -/- cells, due in large part to more PKB associating with the plasma membrane in these cells. Pretreatment of SHIP -/- cells with 25 microm LY294002 resulted in complete inhibition of SF-induced PI(3,4)P(2), while still yielding PI(3,4,5)P(3) levels similar to those achieved in SHIP+/+ cells. This offered a unique opportunity to study the regulation of PKB by PI(3,4,5)P(3), in the absence of PI(3,4)P(2). Under these conditions, PKB activity was markedly reduced compared with that in SF-stimulated SHIP+/+ cells, even though more PKB localized to the plasma membrane. Although phosphoinositide-dependent kinase 1 mediated phosphorylation of PKB at Thr-308 was unaffected by LY294002, phosphorylation at Ser-473 was dramatically reduced. Moreover, intracellular delivery of PI(3,4)P(2) to LY294002-pretreated, SF-stimulated SHIP -/- cells increased phosphorylation of PKB at Ser-473 and increased PKB activity. These results are consistent with a model in which SHIP serves as a regulator of both activity and subcellular localization of PKB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号