首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3557篇
  免费   293篇
  国内免费   3篇
  3853篇
  2023年   15篇
  2022年   20篇
  2021年   37篇
  2020年   33篇
  2019年   52篇
  2018年   52篇
  2017年   42篇
  2016年   69篇
  2015年   108篇
  2014年   169篇
  2013年   172篇
  2012年   220篇
  2011年   208篇
  2010年   167篇
  2009年   149篇
  2008年   216篇
  2007年   231篇
  2006年   213篇
  2005年   226篇
  2004年   198篇
  2003年   174篇
  2002年   195篇
  2001年   67篇
  2000年   45篇
  1999年   42篇
  1998年   50篇
  1997年   35篇
  1996年   35篇
  1995年   42篇
  1994年   34篇
  1993年   38篇
  1992年   29篇
  1991年   33篇
  1990年   31篇
  1989年   24篇
  1988年   25篇
  1987年   18篇
  1986年   12篇
  1985年   30篇
  1984年   25篇
  1983年   18篇
  1982年   23篇
  1981年   18篇
  1980年   26篇
  1978年   14篇
  1977年   13篇
  1976年   14篇
  1974年   14篇
  1973年   11篇
  1969年   12篇
排序方式: 共有3853条查询结果,搜索用时 15 毫秒
21.
We compared the expression of a functional recombinant TMVspecific fullsize antibody (rAb29) in both the apoplast and cytosol of tobacco plants and a single chain antibody fragment (scFv29), derived from rAb29, was expressed in the cytosol. Cloned heavy and light chain cDNAs of fullsize rAb29, which binds to TMV coat protein monomers, were integrated into the plant expression vector pSS. The fullsize rAb29 was expressed in the cytosol and targeted to the apoplast by including the original murine antibody leader sequences. Levels of functional fullsize rAb29 expression were high in the apoplast (up to 8.5g per gram leaf tissue), whereas cytosolic expression was low or at the ELISA detection limit. Sequences of the variable domains of rAb29 light and heavy chain were used to generate the single chain antibody scFv29, which was expressed in the periplasmic space of E.coli and showed the same binding specificity as fullsize rAb29. In addition, scFv29 was functionally expressed in the cytosol of tobacco plants and plant derived scFv29 maintained same binding specificity to TMVcoat protein monomers as rAb29.  相似文献   
22.
Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function.  相似文献   
23.
24.
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non-homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ-Proteobacteria (HisB-N). It has been argued that HisB-N and its closest homologue d -glycero-d -manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d -glycero-d -manno-heptose-1,7-bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB-N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB-N sequences revealed that HisB-Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ- to γ-Proteobacteria where it evolved to the modern HisB-N.  相似文献   
25.
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.  相似文献   
26.
27.
Savchenko G  Wiese C  Neimanis S  Hedrich R  Heber U 《Planta》2000,211(2):246-255
 The regulation of pH in the apoplast, cytosol and chloroplasts of intact leaves was studied by means of fluorescent pH indicators and as a response of photosynthesis to acid stress. The apoplastic pH increased under anaerobiosis. Aeration reversed this effect. Apoplastic responses to CO2, HCl or NH3 differed considerably. Whereas HCl and ammonia caused rapid acidification or alkalinization, the return to initial pH values was slow after cessation of fumigation. Addition of CO2 either did not produce the acidification expected on the basis of known apoplastic buffering or even caused some alkalinization. Removal of CO2 shifted the apoplastic pH into the alkaline range before the pH returned to initial steady-state levels. In the presence of vanadate, the alkaline shift was absent and the apoplastic pH returned slowly to the initial level when CO2 was removed from the atmosphere. In contrast to the response of the apoplast, anaerobiosis acidified the cytosol or, in some species, had little effect on its pH. Acidification was rapidly reversed upon re-admission of oxygen. The CO2-dependent pH changes were very fast in the cytosol. Considerable alkalinization was observed after removal of CO2 under aerobic, but not under anaerobic conditions. Rates of the re-entry of protons into the cytosol during recovery from CO2 stress increased in the presence of oxygen with the length of previous exposure to high CO2. Effective pH regulation in the chloroplasts was indicated by the recovery of photosynthesis after the transient inhibition of photosynthetic electron flow when CO2 was increased from 0.038% to 16% in air. As photosynthesis became inhibited under high CO2, reduction of the electron transport chain increased transiently. The time required for recovery of photosynthesis from inhibition during persistent CO2 stress was similar to the time required for establishing steady-state pH values in the cytosol under acid stress. The high capacity of leaf cells for the rapid re-attainment of pH homeostasis in the apoplast and the cytoplasm under acid or alkaline stress suggested the rapid activation or deactivation of membrane-localised proton-transporting enzymes and corresponding ion channel regulation for co-transport of anions or counter-transport of cations together with proton fluxes. Acidification of the cytoplasm appeared to activate energy-dependent proton export primarily into the vacuoles whereas apoplastic alkalinization resulted in the pumping of protons into the apoplast. Proton export rates from the cytosol into the apoplast after anaerobiosis were about 100 nmol (m2 leaf area)−1 s−1 or less. Proton export under acid stress into the vacuole was about 1200 nmol m−2 s−1. The kinetics of pH responses to the addition or withdrawal of CO2 indicated the presence of carbonic anhydrase in the cytosol, but not in the apoplast. Received: 19 July 1999 / Accepted: 29 December 1999  相似文献   
28.
Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington’s disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an “acanthocytic state” of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.  相似文献   
29.
The capacity of the -Proteobacterium Pseudomonas sp. strain P51, which degrades chlorinated benzenes, to metabolize 1,2,4-trichlorobenzene (TCB) under environmental conditions was tested by its release into two experimental systems. The first system consisted of laboratory scale microcosms which were operated with and without the addition of TCB and which were inoculated with sludge from a wastewater treatment plant. The second system consisted of a non sterile, water saturated soil column. We determined survival of strain P51 after its introduction and its ability to degrade TCB. The population dynamics was followed by selective plating and applying the polymerase chain reaction (PCR) to detect strain P51 and the chlorobenzene ( tcb) genes on catabolic plasmid pP51. The results showed a completely different behaviour of strain P51 in the two habitats under the applied conditions. In the soil column the P51 bacteria inoculated the entire area and their population reached 2 × 106 cells/g soil. The population remained active since TCB was degraded to concentrations below the detection limit of 30 g/l. In the sludge microcosms, the number of strain P51 cells immediately decreased from 4 × 107 cells/ml to 105 cells/ml over a period of 2 days after inoculation, and then the strain disappeared to levels below our detection limit (103–104 cells/ml). In the reactor without TCB the population of P51 maintained a stable value of 105 cells/ml during 8 days but then also decreased to levels below the detection limit. In addition, no significant TCB degradation was found in the sludge reactors. The influence of presence of TCB on maintenance of strain P51 in the two habitats is discussed. This work demonstrates the possibility to successfully apply preselected strains to degrade otherwise poorly degradable substances in complex mixed microbial communities. However, survival and activity may depend strongly on the type of system into which the strain is introduced.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号