首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2010年   2篇
  2008年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
  1983年   1篇
  1979年   1篇
  1974年   1篇
  1969年   1篇
排序方式: 共有17条查询结果,搜索用时 78 毫秒
11.
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.  相似文献   
12.
We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.  相似文献   
13.
Physical association of proteins that underlies cytotoxic signal induction and transduction suggests a possibility of regulating cell response by modifying protein–protein interactions. For protein complexing, chemical cross-linking agents have been traditionally used. However, the ability of various cross-linkers to induce and modify cell responses, cell death in particular, is still obscure. We have undertaken the investigation to test the apoptosis-inducing and modifying properties of the homobifunctional cross-linkers-dimethyl suberimidate (DMS) and 1,5-bis(succinimido-oxycarbonyloxy)pentane (BSOCOP). The functional groups of these cross-linkers are different but both are able to interact with available amino groups. It was shown that bifunctional cross-linkers, unlike their monofunctional analogues, are capable of inducing cell death in transformed cells, thus indicating the crucial role of cross-linking in cell killing. DMS- and BSOCOP-treated cells were shown to undergo cell death by apoptosis, though the signaling pathways were distinct. DMS inhibited bcl-XL and bak but not bax gene expression, while BSOCOP potentiated bax mRNA synthesis immediately after application. Cell pre-incubation with DMS, but not with BSOCOP, resulted in an increasing sensitivity to TNF, although activities of anti-Fas cytotoxic antibodies were then inhibited. Thus, this study has demonstrated for the first time that chemical cross-linkers are capable of inducing apoptosis by themselves and modifying the TNF-dependent and Fas-mediated cell death that may have potential therapeutic significance.  相似文献   
14.
Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.  相似文献   
15.
16.
17.
Forty seven F1 (CBA X C57Bl) mice were used for quantitative morphologic examination of the thymus on 1, 5, 10 and 15 days after a single injection of 0.5 microgram T-activin, and injections of 0.1 microgram of T-activin once a day during 5 days. The number of transformed thymocytes and mitoses figures in cortex was found to be increased reaching a maximum at the 5th day as regards the magnitude and spreading. By the end of the research the number of transformed thymocytes and mitoses returned to initial values. There was a periodical (at the 5th and 10th days) 1 mm2 reduction in the number of thymocytes, an increase in the proportion of medullary thymocytes, reaching maximum at the 5th day, and a tendency towards the reduction of a relative area of the parenchyma. These indicators did not return to the initial values by the 15th days. However there was a tendency towards normalization. The conclusion is made about the stimulatory effect of T-activin on reproduction and migration of thymocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号