首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   12篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   14篇
  2012年   10篇
  2011年   22篇
  2010年   16篇
  2009年   8篇
  2008年   10篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   6篇
  2000年   4篇
  1999年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
  1982年   2篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
131.
We examined whether social priming of cognitive states affects the inhibitory process in elderly adults, as aging is related to deficits in inhibitory control. Forty-eight elderly adults and 45 young adults were assigned to three groups and performed a cognitive control task (Simon task), which was followed by 3 different manipulations of social priming (i.e., thinking about an 82 year-old person): 1) negative—characterized by poor cognitive abilities, 2) neutral—characterized by acts irrelevant to cognitive abilities, and 3) positive—excellent cognitive abilities. After the manipulation, the Simon task was performed again. Results showed improvement in cognitive control effects in seniors after the positive manipulation, indicated by a significant decrease in the magnitude of the Simon and interference effects, but not after the neutral and negative manipulations. Furthermore, a healthy pattern of sequential effect (Gratton) that was absent before the manipulation in all 3 groups appeared after the positive manipulation. Namely, the Simon effect was only present after congruent but not after incongruent trials for the positive manipulation group. No influence of manipulations was found in young adults. These meaningful results were replicated in a second experiment and suggest a decrease in conflict interference resulting from positive cognitive state priming. Our study provides evidence that an implicit social concept of a positive cognitive condition in old age can affect the control process of the elderly and improve cognitive abilities.  相似文献   
132.
133.
Light masking has been studied almost exclusively in the laboratory. The authors populated four field enclosures with locally coexisting nocturnal Acomys cahirinus and diurnal A. russatus, and monitored their body temperatures (T(b)) using implanted temperature-sensitive radio transmitters. A 3-h light pulse was initiated at the beginning of two consecutive nights; preceding nights were controls. A. cahirinus T(b) and calculated activity levels decreased significantly during the light pulse, demonstrating a negative light masking response (light effect on T(b): -0.32 °C?±?0.15 °C; average calculated activity records during the light pulse: 7?±?1.53, control: 9.8?±?1.62). Diurnal A. russatus did not respond to the light pulse. We conclude that light masking is not an artifact of laboratory conditions but represents a natural adaptive response in free-living populations.  相似文献   
134.
In recent years, several sensor-based approaches have been established to early detect single plant stresses, but the challenge of discriminating between simultaneously occurring stressors still remains. Earlier studies on wheat plants strongly affected by pathogens and nitrogen deficiency indicated that chlorophyll fluorescence might be suited to distinguish between the two stressors. Nevertheless, there is lack of information on the pre-symptomatic detection of synchronized occurrence of slight N-deficiency and the early stages of pathogen infection. The usefulness of the blue, green, and yellow fluorescence signals in this context has not yet been explored. We hypothesized that differentiation between wheat plants’ physiological reaction due to N-deficiency and leaf rust (Puccinia triticina) as well as N-deficiency and powdery mildew (Blumeria graminis f. sp. tritici) might be accomplished by means of UV laser-induced fluorescence spectral measurements between 370 and 620 nm in addition to chlorophyll fluorescence (640-800 nm). Plants were provided with either a normal or a modified Hoagland nutrient solution in order to induce a slight N deficit. Pathogen inoculation was carried out on the second fully developed leaf. Four experimental groups were evaluated: (a) N-full-supply [N+]; (b) N-deficiency [N−]; (c) N-full-supply + pathogen [N+/LR] or [N+/PM]; (d) N-deficiency + pathogen [N−/LR] or [N−/PM]. The results revealed that, in addition to the amplitude ratio of R/FR fluorescence, B/G fluorescence also facilitated reliable and robust discrimination among the four experimental groups. The discrimination among the experimental groups was accomplished as early as one and two days after inoculation for powdery mildew and leaf rust infection, respectively. During the 3 days evaluation period, the differences among the treatment groups became more evident. Moreover, several other amplitude ratios and half-bandwidth ratios proved to be suited to early detect fungal infection, irrespective of the nitrogen status of the plant.  相似文献   
135.
We studied the effect of food supplementation during summer and winter in seminatural field conditions on thermoregulation of a desert rodent, the golden spiny mouse Acomys russatus. We hypothesized that (a) under natural food availability (control conditions), mice will use less precise thermoregulation (i.e., an increase in the variance of body temperature [T(b)]) during winter because of low ambient temperatures (T(a)'s) and low food availability and during summer because of low food and water availability; (b) food supplementation will result in more precise thermoregulation during winter, but the effect will be smaller during summer because variation in T(b) in summer is also driven by water availability during that period. We found that under natural food availability, spiny mice thermoregulated more precisely during summer than during winter. They spent more time torpid during summer than during winter even when food was supplemented (although summer nights are shorter), allowing them to conserve water. Supplementing food resulted in more precise thermoregulation in both seasons, and mice spent less time torpid. In summer, thermoregulation at high T(a)'s was less precise, resulting in higher maximum T(b)'s in summer than in winter and when food was supplemented, in accord with the expected effect of water shortage on thermoregulation. Our results suggest that as expected, precise thermoregulation is beneficial when possible and is abandoned only when the costs of homeothermy outweigh the benefits.  相似文献   
136.
The α/β hydrolase fold family is perhaps the largest group of proteins presenting significant structural homology with divergent functions, ranging from catalytic hydrolysis to heterophilic cell adhesive interactions to chaperones in hormone production. All the proteins of the family share a common three-dimensional core structure containing the α/β hydrolase fold domain that is crucial for proper protein function. Several mutations associated with congenital diseases or disorders have been reported in conserved residues within the α/β-hydrolase fold domain of cholinesterase-like proteins, neuroligins, butyrylcholinesterase and thyroglobulin. These mutations are known to disrupt the architecture of the common structural domain either globally or locally. Characterization of the natural mutations affecting the α/β-hydrolase fold domain in these proteins has shown that they mainly impair processing and trafficking along the secretory pathway causing retention of the mutant protein in the endoplasmic reticulum. Studying the processing of α/β-hydrolase fold mutant proteins should uncover new functions for this domain, that in some cases require structural integrity for both export of the protein from the ER and for facilitating subunit dimerization. A comparative study of homologous mutations in proteins that are closely related family members, along with the definition of new three-dimensional crystal structures, will identify critical residues for the assembly of the α/β-hydrolase fold.  相似文献   
137.
138.
Nocturnal Acomys cahirinus and diurnally active A. russatus coexist in hot rocky deserts. Diurnal and nocturnal activity exposes them to different climatic challenges. A doubly-labelled water field study revealed no significant differences in water turnover between the species at all seasons, reflecting the adaptations of A. russatus to water conservation. In summers the energy expenditure of A. russatus tended to be higher than that of A. cahirinus. Energy requirements of A. cahirinus in winter are double than that of A. russatus, and may reflect the cost of thermoregulating during cold nights.  相似文献   
139.
Most mammals can be characterized as nocturnal or diurnal. However infrequently, species may overcome evolutionary constraints and alter their activity patterns. We modeled the fundamental temporal niche of a diurnal desert rodent, the golden spiny mouse, Acomys russatus. This species can shift into nocturnal activity in the absence of its congener, the common spiny mouse, Acomys cahirinus, suggesting that it was competitively driven into diurnality and that this shift in a small desert rodent may involve physiological costs. Therefore, we compared metabolic costs of diurnal versus nocturnal activity using a biophysical model to evaluate the preferred temporal niche of this species. The model predicted that energy expenditure during foraging is almost always lower during the day except during midday in summer at the less sheltered microhabitat. We also found that a shift in summer to foraging in less sheltered microhabitats in response to predation pressure and food availability involves a significant physiological cost moderated by midday reduction in activity. Thus, adaptation to diurnality may reflect the "ghost of competition past"; climate-driven diurnality is an alternative but less likely hypothesis. While climate is considered to play a major role in the physiology and evolution of mammals, this is the first study to model its potential to affect the evolution of activity patterns of mammals.  相似文献   
140.
From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein–protein and protein–lipid interactions to promote GTP hydrolysis in Arf1-GTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号