首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2001年   1篇
  1998年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
Nanotechnology in Therapeutics: Current Technology and Applications, Edited by Nicholas A. Peppas, J. Zach Hilt and J. Brock Thomas (Horizon Bioscience, 2007) contains seventeen chapters written by leading specialists in the field of polymeric materials for drug delivery and holds wealth of background as well as state of the art material divided into four sections: "Intelligent Therapeutics and Responsive Delivery Systems for Improved Absorption and Delivery", "Therapeutic Micro- and Nanodevices", "Nanostructured Therapeutic Materials" and "Nanoparticulate Systems in Intelligent Therapy". This newly published volume provides a stimulating read and a good point of reference to researchers wishing to explore the interdisciplinary fusion of nnanotechnology and medical therapeutics. The following gives brief summary and critically reviews the book.  相似文献   
42.
Caldibacillus debilis GB1 is a facultative anaerobe isolated from a thermophilic aero-tolerant cellulolytic enrichment culture. There is a lack of representative proteomes of facultative anaerobic thermophilic Bacillaceae, exploring aerobic/anaerobic expression. The C. debilis GB1 genome was sequenced and annotated, and the proteome characterized under aerobic and anaerobic conditions while grown on cellobiose. The draft sequence of C. debilis GB1 contains a 3,340,752 bp chromosome and a 5,386 bp plasmid distributed over 49 contigs. Two-dimensional liquid chromatography mass spectrometry/mass spectrometry was used with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) to compare protein expression profiles, focusing on energy production and conversion pathways. Under aerobic conditions, proteins in glycolysis and pyruvate fermentation pathways were down-regulated. Simultaneously, proteins within the tricarboxylic acid cycle, pyruvate dehydrogenase, the electron transport chain, and oxygen scavenging pathways showed increased amounts. Under anaerobic conditions, protein levels in fermentation pathways were consistent with the generated end-products: formate, acetate, ethanol, lactate, and CO2. Under aerobic conditions CO2 and acetate production was consistent with incomplete respiration. Through a direct comparison with gene expression profiles from Escherichia coli, we show that global regulation of core metabolism pathways is similar in thermophilic and mesophilic facultative anaerobes of the Phylum Proteobacteria and Firmicutes.  相似文献   
43.

Introduction  

Although the clinical effects of infliximab therapy in rheumatoid arthritis have been documented extensively, the biological effects of this intervention continue to be defined. We sought to examine the impact of infliximab therapy on the serum proteome of rheumatoid arthritis patients by means of a mass spectrometry-based approach.  相似文献   
44.
45.
IQGAP1 is a scaffolding protein that binds to a diverse array of signaling and structural molecules that are often associated with cell polarization and adhesion. Through interaction with its target proteins, IQGAP1 participates in multiple cellular functions, including Ca2+-calmodulin signaling, definition of cytoskeletal architecture, regulation of Cdc42 and Rac1 dependent cytoskeletal changes, and control of E-cadherin mediated intercellular adhesion. These analysis have been largely restricted to cells of epithelial and fibroblast origin. The present studies were initiated to examine the role of IQGAP1 in cellular interactions involving the lymphoid cells. A mass spectrometric based analysis of IQGAP1 containing complexes isolated from the human NK-like cell line, YTS, identified several known and new potential IQGAP1 interaction partners including receptor of activated C kinase 1 (RACK1) and the small GTPase, Rac2. Immunofluorescence analysis of YTS cells indicated that a minor component of IQGAP1 was localized at the cell membrane with the remainder diffusely distributed through out the cytoplasm. However, at sites of cellular contact, there was a marked accumulation of IQGAP1. Staining for RACK1 and Rac2 revealed that both of these proteins accumulated these contact sites. Antibody-based studies suggested that a subset of RACK1 was associated in an IQGAP1-containing complex, which prevented recognition of RACK1 by monoclonal antibody. These results suggest that RACK1, Rac2, and IQGAP1 are components of complexes involved in NK cell homotypic adhesion.  相似文献   
46.
A new coronavirus has been implicated as the causative agent of severe acute respiratory syndrome (SARS). We have used convalescent sera from several SARS patients to detect proteins in the culture supernatants from cells exposed to lavage another SARS patient. The most prominent protein in the supernatant was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a approximately 46-kDa species. This was found to be a novel nucleocapsid protein that matched almost exactly one predicted by an open reading frame in the recently published nucleotide sequence of the same virus isolate (>96% coverage). A second viral protein corresponding to the predicted approximately 139-kDa spike glycoprotein has also been examined by MALDI-TOF MS (42% coverage). After peptide N-glycosidase F digestion, 12 glycosylation sites in this protein were confirmed. The sugars attached to four of the sites were also identified. These results suggest that the nucleocapsid protein is a major immunogen that may be useful for early diagnostics, and that the spike glycoprotein may present a particularly attractive target for prophylactic intervention in combating SARS.  相似文献   
47.
48.
Thermoanaerobacter spp. have long been considered suitable Clostridium thermocellum coculture partners for improving lignocellulosic biofuel production through consolidated bioprocessing. However, studies using “omic”-based profiling to better understand carbon utilization and biofuel producing pathways have been limited to only a few strains thus far. To better characterize carbon and electron flux pathways in the recently isolated, xylanolytic strain, Thermoanaerobacter thermohydrosulfuricus WC1, label-free quantitative proteomic analyses were combined with metabolic profiling. SWATH-MS proteomic analysis quantified 832 proteins in each of six proteomes isolated from mid-exponential-phase cells grown on xylose, cellobiose, or a mixture of both. Despite encoding genes consistent with a carbon catabolite repression network observed in other Gram-positive organisms, simultaneous consumption of both substrates was observed. Lactate was the major end product of fermentation under all conditions despite the high expression of gene products involved with ethanol and/or acetate synthesis, suggesting that carbon flux in this strain may be controlled via metabolite-based (allosteric) regulation or is constrained by metabolic bottlenecks. Cross-species “omic” comparative analyses confirmed similar expression patterns for end-product-forming gene products across diverse Thermoanaerobacter spp. It also identified differences in cofactor metabolism, which potentially contribute to differences in end-product distribution patterns between the strains analyzed. The analyses presented here improve our understanding of T. thermohydrosulfuricus WC1 metabolism and identify important physiological limitations to be addressed in its development as a biotechnologically relevant strain in ethanologenic designer cocultures through consolidated bioprocessing.  相似文献   
49.
In the present study, singlet oxygen (1O2) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase‐deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced 1O2 formation under high light illumination as monitored by electron paramagnetic resonance spin‐trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high‐pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra‐weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient 1O2 scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号