首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   27篇
  国内免费   1篇
  439篇
  2023年   5篇
  2022年   6篇
  2021年   21篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   21篇
  2014年   21篇
  2013年   18篇
  2012年   24篇
  2011年   33篇
  2010年   28篇
  2009年   16篇
  2008年   31篇
  2007年   24篇
  2006年   18篇
  2005年   21篇
  2004年   18篇
  2003年   14篇
  2002年   22篇
  2001年   14篇
  2000年   15篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   2篇
  1975年   1篇
  1970年   1篇
  1932年   1篇
  1931年   1篇
排序方式: 共有439条查询结果,搜索用时 0 毫秒
101.
Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.  相似文献   
102.
103.
Proteins containing the late embryogenesis abundant (LEA) motif comprise a conserved family, postulated to act as cell protectors. However, their function and mechanisms of action remain unclear. Here we show that PRELI, a mammalian LEA-containing homolog of yeast Ups1p, can associate with dynamin-like GTPase Optic Atrophy-1 (OPA1) and contribute to the maintenance of mitochondrial morphology. Accordingly, PRELI can uphold mitochondrial membrane potential (ΔΨm) and enhance respiratory chain (RC) function, shown by its capacity to induce complex-I/NADH dehydrogenase and ATP synthase expression, increase oxygen consumption and reduce reactive oxygen species (ROS) production. PRELI can also inhibit cell death induced by STS, TNF-α or UV irradiation. Moreover, in vitro and in vivo dominant-negative overexpression of mutant PRELI/LEA (lacking the LEA motif) and transient in vitro PRELI-specific knockdown can render lymphocytes vulnerable to apoptosis, cause mouse embryo lethality and revert the resistance of lymphoma cells to induced death. Collectively, these data support the long-presumed notion of LEA protein-dependent mechanisms of cytoprotection and suggest that PRELI interacts with OPA1 to maintain mitochondria structures intact, sustain balanced ion/proton+ gradients, promote oxidative phosphorylation reactions, regulate pro- and antiapoptotic protein traffic and enable cell responses to induced death. These findings may help to understand how bioenergetics is mechanistically connected with cell survival cues.  相似文献   
104.
Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 and TAB3 dissociate from Beclin 1 and bind TAK1. Moreover, overexpression of TAB2 and TAB3 suppresses, while their depletion triggers, autophagy. The expression of the C-terminal domain of TAB2 or TAB3 or that of the CCD of Beclin 1 competitively disrupts the interaction between endogenous Beclin 1, TAB2 and TAB3, hence stimulating autophagy through a pathway that requires endogenous Beclin 1, TAK1 and IKK to be optimally efficient. These results point to the existence of an autophagy-stimulatory 'switch' whereby TAB2 and TAB3 abandon inhibitory interactions with Beclin 1 to engage in a stimulatory liaison with TAK1.  相似文献   
105.
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.  相似文献   
106.
Shen S  Kepp O  Kroemer G 《Autophagy》2012,8(1):1-3
In the mammalian system, cell death is often preceded or accompanied by autophagic vacuolization, a finding that initially led to the widespread belief that so-called "autophagic cell death" would be mediated by autophagy. Thanks to the availability of genetic tools to disable the autophagic machinery, it has become clear over recent years that autophagy usually constitutes a futile attempt of dying cells to adapt to lethal stress rather than a mechanism to execute a cell death program. Recently, we systematically addressed the question as to whether established or prospective anticancer agents may induce "autophagic cell death". Although a considerable portion among the 1,400 compounds that we evaluated induced autophagic puncta and actually increased autophagic flux, not a single one turned out to kill tumor cells through the induction of autophagy. Thus, knockdown of essential autophagy genes (such as ATG5 and ATG7) failed to prevent and rather accelerated chemotherapy-induced cell death, in spite of the fact that this manipulation efficiently inhibits autophagosome formation. Herein, we review these finding and--polemically--raise doubts as to the very existence of "autophagic cell death".  相似文献   
107.
Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria-localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death-inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.  相似文献   
108.
Although much emphasis has been laid on the role of caspase in cell death, recent data indicate that, in many instances, mammalian cell death is caspase-independent. Thus, in many examples of mammalian cell death the 'decision' between death and life is upstream or independent of caspase activation. Similarly, it is unclear whether PCD of plants and fungi involves the activation of caspase-like enzymes, and no caspase-like gene has thus far been cloned in these phyla. Apoptosis inducing factor (AIF) is a new mammalian, caspase-independent death effector which, upon apoptosis induction, translocates from its normal localization, the mitochondrial intermembrane space, to the nucleus. Once in the nucleus, AIF causes chromatin condensation and large scale DNA fragmentation to fragments of approximately 50 kbp. The AIF cDNA from mouse and man codes for a protein which possesses three domains (i) an amino-terminal presequence which is removed upon import into the intermembrane space of mitochondria; (ii) a spacer sequence of approximately 27 amino acids; and (iii) a carboxyterminal 484 amino acid oxidoreductase domain with strong homology to oxidoreductases from other vertebrates (X. laevis), non-vertebrate animals (C. elegans, D. melanogaster), plants, fungi, eubacteria, and archaebacteria. Functionally important amino acids involved in the interaction with the prosthetic groups flavin adenine nucleotide and nicotinamide adenine nucleotide are strongly conserved between AIF and bacterial oxidoreductase. Several eukaryotes possess a similar domain organisation in their AIF homologs, making them candidates to be mitochondrial oxidoreductases as well as caspase-independent death effectors. The phylogenetic implications of these findings are discussed.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号