首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   5篇
  117篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1992年   1篇
  1991年   3篇
  1986年   1篇
  1982年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
71.
72.
73.
74.
Translation of mRNA plays a critical role in consolidation of long-term memory. Here, we report that markers of initiation of mRNA translation are activated during training for contextual memory and that they undergo diurnal oscillation in the mouse hippocampus with maximal activity observed during the daytime (zeitgeber time 4–8 h). Phosphorylation and activation of eukaryotic translation initiation factor 4E (eIF4E), eIF4E-binding protein 1 (4EBP1), ribosomal protein S6, and eIF4F cap-complex formation, all of which are markers for translation initiation, were higher in the hippocampus during the daytime compared with night. The circadian oscillation in markers of mRNA translation was lost in memory-deficient transgenic mice lacking calmodulin-stimulated adenylyl cyclases. Moreover, disruption of the circadian rhythm blocked diurnal oscillations in eIF4E, 4EBP1, rpS6, Akt, and ERK1/2 phosphorylation and impaired memory consolidation. Furthermore, repeated inhibition of translation in the hippocampus 48 h after contextual training with the protein synthesis inhibitor anisomycin impaired memory persistence. We conclude that repeated activation of markers of translation initiation in hippocampus during the circadian cycle might be critical for memory persistence.  相似文献   
75.
Summary Copper(II) complexes of the type [Cu(L)X], where L=tridentate anion of 2-acetylpyridineN 4-diethyl thiosemicarbazone and X=C1 or Br, were screened against seven fungal strains pathogenic to man viz.Aspergillus niger, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Tricophyton rubrum, Epidermophyton foccosum andMicrosporum canis. The greater growth inhibition exhibited by the bromo complex can be explained on the basis of its lower Cu(II)/Cu(I) redox couple and greater covalent bonding. These compounds represent a novel class of metal-based antifungal agents which provide opportunities for a large number of synthetic variations for modulation of the activities.  相似文献   
76.
77.
Women in low-income settings, common in India, are at risk of inadequate zinc intake due to poor diet quality and low consumption of flesh foods rich in zinc. The aims of this study were to assess the prevalence of zinc status of non-pregnant rural and tribal women living in central India and to identify dietary and non-dietary factors associated with the biochemical zinc status of these women. Rural and tribal non-pregnant women 18–30 years of age were selected using proportion to population sampling near Nagpur, Maharashtra, India. Sociodemographic, biochemical (serum zinc), clinical, and dietary data (1-day interactive 24-h recall) were collected. The mean age of women (n?=?109; rural?=?52; tribal?=?56) was 23.2 years and mean BMI was 17.9 kg/m2. The majority of the participants identified as being non-vegetarian (72 %). The mean?±?SD serum zinc concentration was 10.8?±?1.6 μmol/L, and 52 % of participants had a low serum zinc concentration according to the International Zinc Nutrition Consultative Group (IZiNCG). The median (first and third quartile) energy, zinc intake, and phytate/zinc molar ratio was 5.4 (4.2, 6.7)?MJ/day, 5.3 (3.8, 7.0)?mg/day, and 26 (22, 28), respectively. Zinc intakes were well below IZiNCG recommendations for dietary zinc of 9 mg/day for non-pregnant women aged 14–18 years and 7 mg/day for non-pregnant women aged ≥19 years. Using linear regression analysis to identify non-dietary and dietary factors associated with serum zinc, a significant association was only found for current lactation (p?=?0.012) and energy intake (p?相似文献   
78.
α-Amylase is imperative for starch and its deriviatized industries. Functionalized graphene sheets were tailored and optimized as scaffold for α-amylase immobilization using Response Surface Methodology based on Box–Behnken design, with an overall immobilization efficiency of 85.16%. Analysis of variance provided adequacy to the mathematical model for further studies. Native and immobilized functionalized graphene were characterized using transmission and scanning electron microscopy, followed by Fourier transform infrared (FTIR) spectroscopy. Wheat α-amylase conjugated with functionalized graphene sheets were visually evident on transmission and scanning micrographs while the FTIR spectra showed interplay of various chemical interactions and bonding, during and after immobilization. Optimum pH and optimum temperature for immobilized enzyme though remained unchanged but showed broader range whereas Km showed a slight decrease (1.32 mg/mL). It also showed enhanced thermal and storage stability and retained 73% residual activity after 10 uses. These ensemble of properties and non-toxic nature of functionalized graphene, makes it viable to be absorbed commercially in starch processing industries.  相似文献   
79.
Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号