排序方式: 共有140条查询结果,搜索用时 12 毫秒
71.
72.
Padmanabhan Anbazhagan Meera Purushottam H. B. Kiran Kumar Odity Mukherjee Sanjeev Jain Ramanathan Sowdhamini 《Journal of biomolecular structure & dynamics》2013,31(5):581-598
Abstract Neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) an ancient neurotransmitter, involved in several neurophysiological and behavioral functions, acts by interacting with multiple receptors (5-HT1-5-HT7). Alterations in serotonergic signalling have also been implicated in various psychiatric disorders. The availability of the genome data of nonhuman primates permits comparative analysis of human 5-HT receptors with sequences of non-human primates to understand evolutionary divergence. We compared and analyzed serotonergic receptor sequences from human and non-human primates. Phylogenetic analysis by Maximum Likelihood (ML) method classified human and primate 5-HT receptors into six unique clusters. There was considerable conservation of 5-HT receptor sequences between human and non-human primates; however, a greater diversity at the sub-group level was observed. Compared to the other subgroups, larger multiplicity and expansion was seen within the 5-HT4 receptor subtype in both human and non-human primates. Analysis of non-synonymous and synonymous substitution ratios (Ka/Ks ratio) using the Nei-Gojobori method suggests that 5-HT receptor sequences have undergone negative (purifying) selection over the course of evolution in human, chimpanzee and rhesus monkey. Abnormal human and non-human primate psychopathalogy and behavior, in the context of these variations is discussed. Analysis of these 5-HT receptors in other species will help understand the molecular evolution of 5-HT receptors, and its possible influence on complex behaviors, and psychiatric disorders. 相似文献
73.
Krithika N. Kodumudi Jessica Siegel Amy M. Weber Ellen Scott Amod A. Sarnaik Shari Pilon-Thomas 《PloS one》2016,11(4)
Tumor-infiltrating lymphocytes (TIL) has been associated with improved survival in cancer patients. Within the tumor microenvironment, regulatory cells and expression of co-inhibitory immune checkpoint molecules can lead to the inactivation of TIL. Hence, there is a need to develop strategies that disrupt these negative regulators to achieve robust anti-tumor immune responses. We evaluated the blockade of immune checkpoints and their effect on T cell infiltration and function. We examined the ability of TIL to induce tumor-specific immune responses in vitro and in vivo. TIL isolated from tumor bearing mice were tumor-specific and expressed co-inhibitory immune checkpoint molecules. Administration of monoclonal antibodies against immune checkpoints led to a significant delay in tumor growth. However, anti-PD-L1 antibody treated mice had a significant increase in T cell infiltration and IFN-γ production compared to other groups. Adoptive transfer of in vitro expanded TIL from tumors of anti-PD-L1 antibody treated mice led to a significant delay in tumor growth. Blockade of co-inhibitory immune checkpoints could be an effective strategy to improve TIL infiltration and function. 相似文献
74.
Jing Zhang Krithika Abiraman Sasia-Marie Jones George Lykotrafitis Biree Andemariam 《Biophysical journal》2017,112(1):143-152
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation. 相似文献
75.
Mechanism of membrane binding by the bovine seminal plasma protein,PDC-109: a surface plasmon resonance study 下载免费PDF全文
Thomas CJ Anbazhagan V Ramakrishnan M Sultan N Surolia I Swamy MJ 《Biophysical journal》2003,84(5):3037-3044
PDC-109, the major protein of bovine seminal plasma, binds to sperm plasma membranes upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. The binding process is mediated primarily by the specific interaction of PDC-109 with choline-containing phospholipids. In the present study the kinetics and mechanism of the interaction of PDC-109 with phospholipid membranes were investigated by the surface plasmon resonance technique. Binding of PDC-109 to different phospholipid membranes containing 20% cholesterol (wt/wt) indicated that binding occurs by a single-step mechanism. The association rate constant (k(1)) for the binding of PDC-109 to dimyristoylphosphatidylcholine (DMPC) membranes containing cholesterol was estimated to be 5.7 x 10(5) M(-1) s(-1) at 20 degrees C, while the values of k(1) estimated at the same temperature for the binding to membranes of negatively charged phospholipids such as dimyristoylphosphatidylglycerol (DMPG) and dimyristoylphosphatidic acid (DMPA) containing 20% cholesterol (wt/wt) were at least three orders of magnitude lower. The dissociation rate constant (k(-1)) for the DMPC/PDC-109 system was found to be 2.7 x 10(-2) s(-1) whereas the k(-1) values obtained with DMPG and DMPA was about three to four times higher. From the kinetic data, the association constant for the binding of PDC-109 to DMPC was estimated as 2.1 x 10(7) M(-1). The association constants for different phospholipids investigated decrease in the order: DMPC > DMPG > DMPA > DMPE. Thus the higher affinity of PDC-109 for choline phospholipids is reflected in a faster association rate constant and a slower dissociation rate constant for DMPC as compared to the other phospholipids. Binding of PDC-109 to dimyristoylphosphatidylethanolamine and dipalmitoylphosphatidylethanolamine, which are also zwitterionic, was found to be very weak, clearly indicating that the charge on the lipid headgroup is not the determining factor for the binding. Analysis of the activation parameters indicates that the interaction of PDC-109 with DMPC membranes is favored by a strong entropic contribution, whereas negative entropic contribution is primarily responsible for the rather weak interaction of this protein with DMPA and DMPG. 相似文献
76.
Background
Quorum sensing is a term that describes an environmental sensing system that allows bacteria to monitor their own population density which contributes significantly to the size and development of the biofilm. Many gram negative bacteria use N-acyl-homoserine lactones as quorum sensing signal molecules. In this study, we sought to find out if the biofilm formation among clinical isolates of Acinetobacter spp. is under the control of autoinducing quorum sensing molecules.Methodology/Principal Findings
Biofilm formation among clinical isolates of Acinetobacter spp. was assessed and the production of signal molecules were detected with Chromobacterium violaceum CV026 biosensor system. Characterisation of autoinducers was carried out by mass spectrometric analysis. We have also reported the identification of an autoinducer synthase gene, abaΙ among the isolates that produce quorum sensing signal molecules and have reported that the mutation in the abaI gene influences their biofilm forming capabilities. Using a microtitre-plate assay it was shown that 60% of the 50 Acinetobacter spp. isolates significantly formed biofilms. Further detection with the biosensor strain showed that some of these isolates produced long chain signal molecules. Mass spectrometric analysis revealed that five of these isolates produced N-decanoyl homoserine lactone and two isolates produced acyl-homoserine lactone with a chain length equal to C12. The abaΙ gene was identified and a tetracycline mutant of the abaΙ gene was created and the inhibition in biofilm formation in the mutant was shown.Conclusions/Significance
These data are of great significance as the signal molecules aid in biofilm formation which in turn confer various properties of pathogenicity to the clinical isolates including drug resistance. The use of quorum sensing signal blockers to attenuate bacterial pathogenicity is therefore highly attractive, particularly with respect to the emergence of multi antibiotic resistant bacteria. 相似文献77.
Thao Thi Thanh Ngo Bella Rossbach Isabelle Sbastien Julia C. Neubauer Andreas Kurtz Krithika Hariharan 《Cell proliferation》2022,55(3)
ObjectiveTo provide a standardized protocol for large‐scale production of proximal tubular epithelial cells (PTEC) generated from human pluripotent stem cells (hPSC).MethodsThe hPSC were expanded and differentiated into PTEC on matrix‐coated alginate beads in an automated levitating fluidic platform bioLevitator. Differentiation efficacy was evaluated by immunofluorescence staining and flow cytometry, ultrastructure visualized by electron microscopy. Active reabsorption by PTEC was investigated by glucose, albumin, organic anions and cations uptake assays. Finally, the response to cisplatin‐treatment was assessed to check the potential use of PTEC to model drug‐induced nephrotoxicity.ResultshPSC expansion and PTEC differentiation could be performed directly on matrix‐coated alginate beads in suspension bioreactors. Renal precursors arose 4 days post hPSC differentiation and PTEC after 8 days with 80% efficiency, with a 10‐fold expansion from hPSC in 24 days. PTEC on beads, exhibited microvilli and clear apico‐basal localization of markers. Functionality of PTECs was confirmed by uptake of glucose, albumin, organic anions and cations and expression of KIM‐1 after Cisplatin treatment.ConclusionWe demonstrate the efficient expansion of hPSC, controlled differentiation to renal progenitors and further specification to polarized tubular epithelial cells. This is the first report employing biolevitation and matrix‐coated beads in a completely defined medium for the scalable and potentially automatable production of functional human PTEC. 相似文献
78.
Egawa T Ganesan K Lin MT Yu MA Hosler JP Yeh SR Rousseau DL Gennis RB 《Biochimica et biophysica acta》2011,1807(10):1342-1348
Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins. 相似文献
79.
80.
λ Exonuclease is a highly processive 5′→3′ exonuclease that degrades double-stranded (ds)DNA. The single-stranded DNA produced by λ exonuclease is utilized by homologous pairing proteins to carry out homologous recombination. The extensive studies of λ biology, λ exonuclease enzymology and the availability of the X-ray crystallographic structure of λ exonuclease make it a suitable model to dissect the mechanisms of processivity. λ Exonuclease is a toroidal homotrimeric molecule and this quaternary structure is a recurring theme in proteins engaged in processive reactions in nucleic acid metabolism. We have identified residues in λ exonuclease involved in recognizing the 5′-phosphate at the ends of broken dsDNA. The preference of λ exonuclease for a phosphate moiety at 5′ dsDNA ends has been established in previous studies; our results indicate that the low activity in the absence of the 5′-phosphate is due to the formation of inert enzyme–substrate complexes. By examining a λ exonuclease mutant impaired in 5′-phosphate recognition, the significance of catalytic efficiency in modulating the processivity of λ exonuclease has been elucidated. We propose a model in which processivity of λ exonuclease is expressed as the net result of competition between pathways that either induce forward translocation or promote reverse translocation and dissociation. 相似文献